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Abstract – In this paper, we suggest studying the 

stability of power systems under disturbances by 

analyzing the processes of synchronism loss, given 

electromechanical waves in power system that form an 

oscillatory structure of motion. In contrast to the 

classical formulation of the stability problem, an 

indispensable part of the study on the loss of 

synchronism is the location of an out-of-step cutset in 

the system (the spatial structure of instability).  The 

problem of synchronism loss analysis has two 

statements:  the prediction of possible instability 

structures and the determination of the instability 

structures in specific emergencies. The prediction of 

instability structures is made based on the equal areas 

method applied to the motion of excited oscillators in 

the system. In this case, possible instability structures 

are selected by comparing the energy and time 

characteristics of the unstable motion. The analysis of 

the processes of synchronism loss in power systems for 

a given emergency involves the calculation of the 

kinetic energy of mutual oscillations of an unstable pair 

of an oscillatory structure. The identification of the 

unstable pair of subsystems enables the out-of-step 

cutset to be located. The excess kinetic energy of the 

mutual motion of the unstable pair subsystems becomes 

an energy characteristic of the loss of synchronism. 

 

Index Terms – Power systems, electromechanical 

waves, oscillatory structures, oscillators of the system, 

possible and actual trajectories of motion, energy-time 

diagrams, unstable pair 

 

I. INTRODUCTION 

The complexity of electromechanical transients in power 

systems manifests itself in the complexity and diversity of 

the processes related to upsetting the stability of parallel 

operation of synchronous machines (angle stability).  

One of the important goals of the practical study on the 

loss of stability is to determine the position of the out-of-

step cutsets under various emergency disturbances. 

Identification of the spatial structure of instability becomes 

particularly relevant when building automatic emergency 

control systems to ensure the stability of complex power 

systems under emergencies that occur far from generating 

sources. 

Classical methods of studying the stability of complex 

power systems (the method of "small" oscillations, 

transient stability analysis using the Lyapunov function) do 

not determine the position of an out-of-step cutset [1-4]. 

The studies are completed as soon as the fact of stability or 

instability of the considered system is established. The out-

of-step cutset is detected beyond the stability study 

procedures, after the numerical calculation of the unsteady 

transient process on the basis of an analysis of changes in 

the angular coordinates at different nodes of the system 

over time. 

Practical analysis of stability requires an answer not only 

to the question – ‘Will there be a stability loss in case of a 

particular disturbance (finite or "infinitesimal")?’, but also 

to the questions: ‘In what cutset will this loss of stability 

occur and how does its spatial position depend on the 

properties of the system and disturbance?’ Within the 

framework of such an extended formulation of stability 

problems, the issue of the spatial position of the cutset 

where the out-of-step conditions develop (the structure of 

unstable motion) becomes an integral part of the methods 

and algorithms of the study. Such a statement can be called 

the problem of analysis of disintegration processes of 

synchronous operation (synchronism) of power systems 

under disturbances (the structural stability analysis). 

The issue of a structure of unstable motion is part of the 

more general issue of the spatial structure of 

electromechanical motion in a complex system. The spatial 

structure of motion (hereinafter referred to as the structure 

of motion) can be understood as the division of a system 

into regions (subsystems), within which the motion of 
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components included in them at the time under 

consideration have some common qualitative feature. It is 

worth noting that this common feature should be 

determined not only for the rotors of synchronous 

machines but also for the voltage vectors at the nodes of 

the system. This makes it possible:  

- to cover the entire space of the power system;  

- to determine which pairs of connected nodes belong to 

different subsystems, i.e. to distinguish the ties between 

them, by determining the boundaries of the subsystems and 

their connectivity with others and, consequently, to build a 

topology of motion in the system. 

Such a feature can be represented, for example, by the 

sign of angle change (between the voltage vector or the 

longitudinal axis of the synchronous machine rotor and the 

vector rotating at a speed of the center of the system 

inertia), which occurred from the emergency disturbance 

to the considered time. 

The idea of the center of inertia of the power system was 

introduced in [5] and repeatedly used [6,7, etc.]. The 

velocity and motion of the center of inertia of the power 

system describe its general motion under the influence of 

disturbances. The characteristics of the motion of the 

inertia centers of the subsystems determined in one way or 

another were not used in the studies of transients and 

stability. A remarkable property of non-inertial systems of 

coordinates associated with the centers of inertia of the 

system and subsystems (zero total momentum of motions 

relative to the centers of inertia [8]), makes it possible to 

significantly simplify the calculations of kinetic and 

potential energy, determine their spatial distribution and 

qualitative composition (regional and local components) 

and, on this basis, analyze the processes of loss of 

synchronism. 

The structure of motion is determined by many factors: 

the network structure of the system and the "rigidity" of 

connections, the distribution of inertial masses, the action 

of control systems, the location of the disturbance and its 

severity. It is an important characteristic of the transient 

process, whose development in time and space results 

(under stability loss) in the spatial structure of instability. 

The processes of stability loss are closely related to the 

physical effects observed during electromechanical 

oscillations in the power system. These effects manifest 

themselves in the spatial patterns of the network (in the 

nodal space) of the power system. Computational studies 

allow us to establish five qualitative effects because power 

systems belong to the class of distributed oscillatory 

systems (in the format: effect - to the left, its cause – to the 

right): 

1. A small number of free oscillations observed under any 

specific disturbances. 

A small number of 

observed oscillations 

under disturbances in an 

extended system. 

= 

The resonance nature 

of the system 

response determined 

by the place of 

disturbance. 

2. The phenomenon of oscillation dispersion caused by the 

concentration of rotating masses.  

The farther the 

observation area from 

the emergency center, 

the later and slower the 

oscillations begin in it. 

= 

Low-frequency 

electromechanical 

oscillations propagate 

faster than high- 

frequency oscillations. 

3. The wider spread of low-frequency oscillations. 

The lower the frequency 

of oscillations, the 

greater part of the system 

experience them. = 

Low-frequency 

oscillations have 

longer wavelengths 

and greater 

penetration than high- 

frequency 

oscillations. 

4. The oscillations in the system near its center of inertia 

occur in the form of motions of areas (subsystems), any 

adjacent of which move in opposite directions, i.e. the 

oscillatory motion is wavelike distributed throughout the 

system. As the transient process develops, the number and 

composition of subsystems, as well as the method of their 

integration by inter-regional ties, i.e. the structure 

(topology) of the observed oscillatory motion (its 

oscillatory structure), in general, change. This effect can be 

represented by the ratio: 

Oscillations occur in the 

form of oppositely 

directed motions of 

adjacent areas (regions) 

of the system. 

= 

The topology of 

oscillatory motions is 

determined by their 

wave character. 

5. The fifth qualitative effect is associated with a possible 

change in the spatial position of the cutset with primarily 

developing out-of-step conditions under a further increase 

in the disturbance severity, which leads to stability loss. 

This effect is naturally associated with the changes in the 

relationships between the conditions of the motion 

development along the limit (in terms of stability) paths in 

the extended power system, which contains a lot of weak 

links that appear in different places. These weak links 

manifest themselves through the development of instability 

under different values of the limit disturbance in the 

considered place of the system at different times. It appears 

that the observed structure of the primarily developing out-

of-step condition is determined by the location of the weak 

link, which reaches the critical stability state first. This 

consideration can be represented as follows: 

A change in the 

instability structure with 

a change in the 

disturbance severity. 

= 

A change in the 

location of the weak 

link that reaches the 

critical state first. 

The basic idea of the structural stability analysis is the 

assumption that the instability is always associated with 

"weak" cutsets in the system, whose overload at dynamic 

or static variations in the conditions leads to instability. 

The manifestations of these weak links in the processes of 
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stability loss can be associated with energy characteristics 

of the electromechanical transient process: its kinetic and 

potential energy and the spatial distribution of these 

components in the system. 

Changes in the kinetic and potential energy of the system 

and its parts are determined by the trajectory of motion. 

When choosing the trajectories of the system motion, 

studied for stability, it is advisable to use trajectories, 

obviously dangerous for stability. Due to the fourth of the 

above-mentioned properties of electromechanical 

oscillations, it can be assumed that these trajectories should 

be chosen on the basis of studies of the structure of the 

oscillatory motion developing in the system under 

emergency. 

The method used to study electromechanical processes 

and stability of power systems is based on an analysis of 

spatial-temporal characteristics of the system response to 

disturbing effects caused by wave processes in a 

distributed oscillatory system with lumped masses [9, 20]. 

The wave approach has been recently widely used to 

describe the motion of energy systems and to state the 

stability problems. However, despite the development of 

microprocessors and technologies for obtaining phasor 

measurements [10-12], the algorithms for emergency 

control to prevent stability loss in power systems [13] do 

not use the wave approach yet. 

In the known studies devoted to the development of the 

wave approach [14-18], there are features that do not 

enable them to be fully used in the analysis of the processes 

related to the loss of synchronism. Firstly, the models with 

distributed mass are often used, which, generates an 

unlimited spectrum of frequencies and destroys dispersion 

when considering wave processes. Secondly, the concept 

of the structure of motion is not used, which significantly 

complicates the formulation of stability problems of 

complex power systems and solving them. 

 Thus, the kinetic energy and potential energy of the 

electromechanical transient process, defined in [17,18], are 

not associated with the structure of oscillatory motion, their 

distribution in the space of the power system and the effect 

of this distribution on stability are not considered. At the 

same time, the concept of the structure of motion is quite 

natural within the wave approach, which has the ability to 

operate positive and negative half-wave areas of the 

system. Thirdly, electromechanical waves are considered 

to analyze the propagation of disturbances in the running 

version, which makes it difficult to study the weak links of 

the system. Weak links of the system are easier to identify 

on the basis of standing waves. In addition, in general, 

these studies are intended for a mathematical description 

of electromechanical motion and instability processes, 

their physical content recedes into the background.  

The application of the wave approach used in conjunction 

with the analysis of the structure of motion for the study of 

the processes of synchronism loss is the main content of 

this paper. The wave approach used to identify the 

structure of motion allows us to consider the processes 

from a physical point of view: namely, the loss of 

synchronism of the power system as a combination of the 

wave process of the oscillatory structure formation and the 

development of unstable motion between the arising 

objects of this oscillatory structure. 

In [19-25], the authors present the main content of the 

approach used to study the processes of loss of 

synchronism in complex power systems. These studies are 

focused on: 

-the structures of "small" standing electromechanical 

self-oscillations of extended power systems of different 

scale (hereinafter referred to as wave structures) [20];  

- the algorithms for estimation of transient stability with 

the use of wave and oscillatory structures, based on energy 

relations (the equal areas method for the oscillatory 

structures of motion) [19,21,23,24];  

- the statements and proposals for solving the problems 

of predicting the out-of-step conditions due to disturbances 

in the power system and identifying the out-of-step 

conditions of generators (the center of the swing is inside 

the synchronous machine) [22]; 

- the algorithms for identification of instability and 

location of an out-of-step cutset using the results of the 

integration of the equations of the mathematical model of 

the power system [25];  

- the algorithms for selecting control actions of 

emergency control systems to ensure stability, using 

dynamic models of the control object [25]. 

The equal areas method is the most well-known and long-

used method of dynamic stability analysis [1,2,26, etc.]. 

This method, used in this paper for oscillatory motion 

structures, is designed to search for limit transient disturb-

ances that lead to the loss of transient stability between the 

subsystems of the oscillatory structure in the first and sec-

ond cycles of swings. It is implemented by calculating [23, 

24]: 

- the relative velocities of motion of regional subsystems 

of the oscillatory structure after any disturbance (emer-

gency scheme);  

- the ascending branches of trajectories of regional dis-

placement of subsystems of the oscillatory structure (with 

increasing mutual angles between the centers of inertia of 

the adjacent subsystems) in the pre-emergency scheme (co-

inciding with the post-emergency one) in the first and sec-

ond cycles of swings (conditions  on the ascending branch 

of the first cycle are determined  by a staged change in the 

generator angles proportional to the relative velocities of 

their regional motion, the conditions of the second cycle of 

swings are calculated similarly for the opposite signs of rel-

ative velocities); 

- the full (for zero duration of emergency) braking mar-

gins for the subsystems in the first and second cycles of 

swings until they reach the maximum displacement identi-

fied by the appearance of a positive time derivative of the 

total kinetic energy of regional motion; 
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- the acceleration work of subsystems in the emergency 

scheme by calculating a series of conditions under changes 

in the generator angles proportional to their regional rela-

tive velocities;  

- the conditions (full kinetic energy of oscillations, ac-

quired by the system in emergency conditions, the maxi-

mum duration of the emergency, structure of instability) 

under which the acceleration work of the subsystems can 

be compensated by the remaining braking work in the first 

cycle or braking margin in the second cycle of swings. 

As in the classical equal areas method, modeling of the 

power system is simplified (synchronous machines are rep-

resented by constant EMF behind transient reactance, the 

differential equations of rotor motion do not allow for the 

damping torque). The load can be represented by shunts 

and static voltage characteristics. All calculations are car-

ried out for the complete scheme of the power system.  

Below we consider two statements for the nonlinear 

problem of studying the processes of the loss of 

synchronism in an electric power system: 

1. Forecast of possible options of the synchronism loss 

for some set of disturbances to make a general overview of 

the stability problems. 

2. Identification of the synchronism loss during the tran-

sient process and determination of its characteristics under 

specific topology and operating conditions. 

The first of them is based on the method of equal areas 

for oscillatory motion structures, does not require calcula-

tions of electromechanical transients and is designed to:  

- estimate the conditions for the development of unstable 

motion (determination of limit disturbances);  

- determine instability structures at disturbances in differ-

ent places of the power system; 

- identify actual cases of changes in the instability struc-

ture with an increase in the emergency severity;  

- estimate time characteristics of unstable processes to 

formulate the requirements for emergency control systems;  

- determine the requirements for the speed of relay pro-

tection and switching devices. 

The second solution can be used to:  

- construct automatic emergency control systems that 

employ a dynamic mathematical model of the system of any 

complexity when selecting control actions to ensure the sta-

bility of complex power systems;  

- visualize the power system modeling results (to display 

the motion of the emerging subsystems) by computer soft-

ware for the calculation of electromechanical transients;  

- identify the structure of the power system (or its part) 

motion based on the phasor measurements used to control 

it. 

The results of the research are presented in Sections 2, 3 

and 4 of the paper. In Section 2, we propose a hierarchical 

structure of coordinate systems for describing the motion 

of synchronous machines. The power and energy charac-

teristics of the motion of the power system divided into 

subsystems in the coordinate systems associated with the 

center of inertia of the system and the centers of inertia of 

the subsystems are determined. The idea of system-wide, 

regional and local processes is introduced. An emphasis is 

placed on the independence of the system-wide energy 

characteristics of motion and the total energy of oscilla-

tions from the assumed subdivision into subsystems. 

Section 3 presents the basic concepts and algorithms to 

identify the instability structures in the case of transient 

disturbances of the considered steady-state conditions in a 

power system give an overview of the composition of the 

stability problems. Since the calculations are of an assess-

ment nature (carried out without integration of the equa-

tions of the mathematical model of the system), the struc-

tures of the motion coincide with the wave (oscillating) 

structures of "small" oscillations excited in case of an 

emergency in the considered place of the system. In this 

case, it is assumed that the "weak" ties of the system are 

sufficiently fully represented by the intersystem cutsets of 

wave structures describing "small" standing electrome-

chanical waves of different frequencies in the power sys-

tem with "off" damping. 

Section 4 presents algorithms for tracking the develop-

ment of the oscillatory structure of motion when integrat-

ing the equations of the mathematical model of the system 

used, a method for locating the cutset with out-of-step con-

ditions and the energy characteristic of instability, i.e. the 

excess kinetic energy of an unstable pair of subsystems. 

II. THE STRUCTURE OF THE MOTION AND ITS POWER AND 

ENERGY CHARACTERISTICS 

We introduce a formal representation of the structurally 

organized motion of power systems. Let us divide a set of 

nodes of the power system into a number of subsets. The 

nodes included in one of these subsets will be assigned to 

some subsystem. We will divide the system into 

subsystems so that each node of the system is included in 

only one subsystem, and, in addition, let all nodes of the 

subsystem form a simply-connected region on a network 

graph of the system. The system links that connect the 

subsystem nodes with each other will be called the internal 

ties of the subsystem. The links connecting the nodes from 

different subsystems will be referred to as intersystem ties. 

The resulting partition of the system into subsystems and 

intersystem ties connecting them represents a structural 

presentation (structural model) of the system. 

To simplify, the structural model will be called the 

"structure" of the system S (which must be distinguished 

from the usual network structure). The number of 

subsystems included in the structure gives its dimension 

R(S). It is clear that one and the same system can be 

represented by a set of its structural presentations 

(structures). 

Let the motion of the system be known, i.e. all 

coordinates of the system are known as functions of time. 
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Let the rotation speed of the i-th synchronous machine be 

represented by a sum of constant component (rotation 

frequency in the initial conditions) and three relative 

processes: 

0 0 0( ) ( ) ( ) ( )gi gis st t t t     ,      (1) 

where:  

0 0(0)  ,  

0 0 0( ) ( )t t   ,  

0 0 0( ) ( ) ( )s st t t   , 

0( ) ( ) ( )gis gi st t t   , 

 
 

0 =   
i gi

i

i

i

J t

t
J







,  

 
s

s

0 =

i gi

i

s

i

i

J t

t
J








.  

The following symbols are introduced here: 0(t) - the 

velocity of the center of inertia of the system, s0(t) - the 

velocity of the center of inertia of the subsystem to which 

this synchronous machine is assigned, i, is - the set of active 

(generator) nodes in the whole system and in the s-th 

subsystem, Ji - moment of inertia of the i-th synchronous 

machine,  0(t) - the deviation of the velocity of the 

center of inertia of the system at time t from the initial one 

in the steady state 0 (the highest level of the motion 

hierarchy),  s0(t) - synchronous motion of the 

subsystem - regional process, determined by the deviation 

of the velocity of the center of inertia of the subsystem 

relative to the velocity of the center of inertia of the system 

(the average level of the hierarchy of motion),  gis(t) – 

individual motion - the local process of motion of a 

synchronous machine in the s-th subsystem relative to its 

center of inertia (the lowest level of the motion hierarchy).  

The motion of the system, described by the introduced 

three-stage hierarchical system of relative processes, will 

be called structurally organized. The structural 

organization of the system leads to the allocation of objects 

at different levels: the system as a whole, subsystems and 

individual synchronous machines. Depending on the 

system structure, the same motion of the system will be 

structurally organized in different ways (will have different 

forms of structural organization). As can be seen from the 

above relations, the component of the motion of the center 

of inertia of the system remains unchanged with the 

variation in the system structure. 

It is possible to represent the absolute motion of rotor of 

the synchronous machine ( )gi t  at time t as a sum of 

components

0 0 0

0 0 0

0 0 0

( ) (0) ( ) ( ) ( )

(0) ( ) ( ) ( ) ( ),

t t t

gi gi s gis

gi s gis

t t t dt t dt t dt

t t t t

 

    

        

       

    

where (0)gi - initial value,  )(0 t - the displacement of 

the center of inertia of the system at a constant velocity of 

its motion, )(0 t - the relative motion of the center of 

inertia of the system due to changes in the velocity of its 

motion in the interval (0-t), 
0( )s t - the angular 

displacement of the center of inertia of the subsystem 

relative to the center of inertia of the system, ( )gis t  - 

the angular displacement of the synchronous machine in 

the s-th subsystem relative to the center of inertia of the 

same subsystem.  

It follows from the introduced definitions that if each 

generator of the system is assigned to a particular (but only 

one) subsystem, then, regardless of the method of splitting 

the system into subsystems, the total momentums of 

relative (near the centers of mass) motions of subsystems 

in the system and synchronous machines in subsystems are 

zero: 

 
0 0 0 

s

s s i gis

s i

J (t) =  , J (t) =     for all s.       (3) 

where 

s

s i

i

J J  - total moment of inertia of the 

subsystem. 

Differentiation and integration of (3) give the 

corresponding relations for relative accelerations and 

relative angular displacements 

 

0 0 0,
s

giss
s i

s i

d( )d( )
J ,  J  =

dt dt


      (4)

0 0

0

0

0

0.
s s

t

s s s s

s s

t

i gis i gis

i   i    

J (t)dt = J (t)=  , 

J (t)dt = J (t)=





 

 

 

 

    (5) 

 

Taking into account the relations for the total momen-

tums in the coordinate systems of the centers of inertia of 

systems and subsystems allows us to obtain the equations 

of motion of individual objects of the structure. The motion 

of the center of inertia of the system satisfies the equation 

                          0

E E

d
 J M

dt


  ,                         (6) 

where 
EM is the total excess torque on the shafts of ma-

chines in the system. 

The equation of relative motion of the center of inertia of 

the s-th subsystem in a non-inertial system associated with 

the center of inertia of the system can be written as follows 

            0s s
s s E

E

d J
J M M

dt J


                  (7)  











(2) 
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The value 
0

s
s s E

E

J
M M M

J
      is an excess torque 

acting on the subsystem at its relative motion near the cen-

ter of inertia of the system. It follows from the definition 

of 
0sМ that  

s

s .М 00
The torques 

sM  act 

on subsystems in their absolute motion.  

The equation of motion of the synchronous machine rel-

ative to the center of inertia of the subsystem, in which it is 

included, is 

 

             
 gis i

i i s

s

d J
J M M

dt J


                    (8) 

The value  i
is i s

s

J
M M M

J
      is an excess 

torque acting on the synchronous machine at its relative 

motion near the center of inertia of the subsystem the ma-

chine belongs to. For the sums 
isM  and 

iM  for all 

machines in the subsystem, the ratios are performed          

 
ss i

si

i

is MM,M 0 .    

The excess torques
iM  affect the synchronous machine 

in their absolute motion.  

The total kinetic energy of the system )(tK at time t is the 

kinetic energy in the steady state  plus additional kinetic 

energy gained during the transient period (0 - t), i.е. 

ΔK(t)KK(t)  0 . The additional kinetic energy of the 

system ΔK(t) consists of the contributions of individual 

synchronous machines (t)ΔKi : 
i

i(t)ΔKΔK(t) . 

When summing (given the relations (3)), we obtain the 

kinetic energy of the system in a transient process, 

expressed through the variables that define the structurally 

organized motion (9):      

 

 
     

 
2 2 2

0 0

0 0 0
2 2 2

s

gis s

i s E E

s i s

ΔΩ t ΔΩ t ΔΩ t
K t K J J J Ω J ΔΩ t     

The additional total kinetic energy  tΔK  is divided into 

components (10): 

 

              ,locs regs sys loc reg sys

s s

ΔK t K t K t K t K t K t K t      

where 
locK , 

regK , 
sysK  - kinetic energies of local 

oscillatory processes in subsystems, regional oscillatory 

processes in the system and general motion in the 

translational degree of freedom. The last component is 

represented by the expression   

 

   
 2

0

0 0
2

sys E E

ΔΩ t
K t Ω J ΔΩ t J  .                        (11) 

The component 
locsK  characterizes the intensity of 

internal motions in subsystems, their "heating”. The 

component 
regsK  determines the proportion of the kinetic 

energy of oscillations sent to the oscillatory motion of a 

region, considered as a whole.  

The components
locK , 

regK  characterize the processes 

due to the oscillatory degrees of freedom, they equal zero 

at synchronous motion in the entire system. The sum of the 

components  

                                  

   22

0

2 2
s

giss

osc reg loc s i

s s i

tt
K K K J J


      

                                                                                   (12) 

determines the total kinetic energy of the system 

oscillations. The latter relationship can be interpreted as a 

spatial decomposition of the kinetic energy of oscillations. 

Since the total kinetic energy of the system in a transient 

process and its component determined by translational 

motion, do not depend on the structure of the system, the 

sum 
osc loc regK K K  does not depend on the partition 

of the system into subsystems either. In the event of 

variation in the structure of the system, only the 

relationship between the kinetic energy of local and 

regional processes
locK  

regK will change. 

Based on the equations for relative motion, we write the 

following relationships between the work and the changes 

in kinetic energy for the objects (system -subsystem-  syn-

chronous machine) 
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




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 
 

               (13) 
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


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

 
   

 
              (14) 
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gis

i is gis

t t

d J M d











 
   

 
             (15) 

The right-hand parts of relationships (13 – 15) determine 

the work performed during the motion of the system ob-

jects. It can be associated with changes in the potential en-

ergy on their trajectories.  

Similar relationships can be obtained with the introduction 

of a four-step hierarchy of motions with the selection of 

objects: system-platforms (zones) - subsystems-synchro-

nous machines. 

0K

ΔK(t)

http://esrj.ru/


 N. Lizalek, V. Vasiliev                                                                                                    Energy Systems Research, Vol. 1, No. 2, 2018 

 

 

75 

III. THE FORECAST OF THE SYNCHRONISM LOSS OPTIONS 

UNDER SHORT-TERM TRANSIENT DISTURBANCES 

Possible instability development in different cutsets of a 

power system even with the unchanged location of the 

emergency center determines the necessity of introducing 

a concept of a spectrum of limit disturbances of dynamic 

stability. This is an energy spectrum. To determine the 

spectrum of limit disturbances means to estimate the mini-

mum energy characteristic of the transient process accom-

panied by stability loss, in which case each structure of the 

excited instability will correspond to its energy index. 

The processes of stability loss of the mutual motion on 

small time intervals (in the first and second cycles of 

swings) are essentially connected with the first, fourth and 

fifth of the above-mentioned properties of the power sys-

tem as a distributed oscillatory system. The second and 

third properties on these time intervals do not have time to 

manifest themselves. They will begin to play a significant 

role in the processes of stability loss at more distant time 

instants (in the third, fourth, etc. cycles of swings). 

The first property determines the composition of the ex-

cited oscillators of the system [19, 21] under considered 

disturbance, while the fourth and fifth properties jointly 

identify a system object winning the "race" to the loss of 

synchronism. A comparison of the instability options in-

volves the determination and comparison of the following 

indices: 

- the magnitude of the limit disturbance in terms of sta-

bility (the energy characteristics of limit disturbances); 

- the time of the unstable motion development; 

- the spatial configuration of instability (locations of out-

of-step cutsets). 

Figure 1 shows typical small-size oscillating structures 

taken from low-, medium - and high-frequency parts of the 

spectrum of "small" electromechanical self-oscillations of 

power systems [20] (they were obtained considering power 

systems of various sizes with the number of synchronous 

machines varying from units to hundreds). The numbered 

circles denote inphase moving groups of synchronous 

machines-subsystems, the straight lines stand for dynamic 

cutsets. For the oscillating structures, the inertia of 

subsystems is demonstrated by the change in the radius of 

a circle symbolizing the subsystem, proportionally to the 

cubic root of its total rotating mass. 

The small-size oscillators of the system are its "weak" 

links represented by intersystem cutsets. Their manifesta-

tions through the processes of loss of stability under spe-

cific disturbances are determined by modeling the oscilla-

tory structures of the motion (models of motion) develop-

ing in each of them. The identification of subsystems of 

model oscillatory structures on a particular oscillator under 

a specific disturbance in the system [19, 21] has a simple 

physical meaning: a subsystem is a connected region of the 

system in which all the subsystems of the oscillating struc-

ture move in one direction relative to the center of inertia 

of the system.  
 

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Examples of oscillating structures of power 

interconnections. 
 

During its motion, the system is divided into subsystems 

maximum possible in terms of size within which the max-

imum attainable synchronism is provided. Opposite dis-

placement of adjustment subsystems of the oscillatory 

structure is a precondition for instability of their mutual os-

cillations as whole structural entities. The maximum sizes 

of the subsystems mean that the study on the processes of 

loss of the intersystem stability of mutual motion in a given 

model oscillatory structure does not need a more detailed 

structural representation of the system by a larger number 

of subsystems.   

Model oscillatory structures are distinguished on oscil-

lating structures of power systems coinciding with the 

wave structures of "small" oscillations of different frequen-

cies [20]. The oscillation frequency can be used as the 

"name" of the oscillator [19, 21]. The consideration of the 

first of the power system properties as a distributed oscil-

latory system is reduced to the use of oscillators associated 

with the regional spectra of small oscillations. This is 

achieved by specifying the support nodes of the application 

of the forcing harmonic action in the part of the system 

where the considered emergencies occur [20-22]. The 

model oscillatory structures constructed on the system os-

cillators characterizing the structures of “small” oscilla-

tions near the equilibrium point in the pre-emergency con-

ditions can be used to describe the free motion of the sys-

tem after the elimination of the disturbing effect. 
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The determination of the stability limit disturbances re-

quires the calculation of the work under mutual oscillations 

in the system. The equations of energy balance at oscilla-

tions of objects of various hierarchical levels on time inter-

val (t0 – t) have the form (13 – 15). Integrals of (13-15) 

must be calculated on the trajectories of the system, i.e. at 

angular coordinates, velocities, and voltages that satisfy the 

equations of transient process of the system. Let all coor-

dinates and corresponding velocities of relative motion of 

all objects of the system (subsystems and individual syn-

chronous machines within the subsystems), and, conse-

quently, all unbalances of moments, be known at some 

time t0. The differentials of the system variables at any time 

are determined by the equations of motion. 

 

 
s0 s0

gis gis

(t), 

(t),

d dt

d dt





  

  

             (16)

 

 

s0 s0

gis is

(t),

(t).

s

i

dt
d M

J

dt
d M

J

  

  

                                       (17) 

The procedure of integration of the equations of motion 

and calculation of the work is reduced to the summation of 

the differentials of variables and elementary work (prod-

ucts of unbalances of moments and the differentials of dis-

placements). 

The observer of the system motion, being in the situation 

that has developed by the time t0, is not able to determine 

what margin of change in the potential energy of the sys-

tem remains until the loss of stability. The reason for this 

is that the calculation of the work requires knowledge of 

the system trajectory, i.e. the integration of the equations 

of motion at t > t0. However, some estimation of this mar-

gin can be made on the basis of the assumption about the 

smallness of the change in the object velocities (i.e. object 

velocities can be considered constant). Fixation of the ob-

ject velocities at the time t0 allows us to predict the change 

in system angles in the simplest way, i.e. to determine their 

differentials without integration of the equations of motion 

[19]. 

In fact, this procedure is reduced to stopping the integra-

tion process at time t0 and calculating the work under the 

predicted uniform motion of objects (i.e. along the trajec-

tory that continues the actual trajectory after the time in-

stant t0). It is clear, that to correctly determine the moments 

acting in the system at each point of such a trajectory, the 

balance equations of active and reactive power at the nodes 

of the system must be satisfied. Such trajectories, satisfy-

ing only the laws of conservation of momentum of relative 

motions near the centers of inertia (3) and the equations of 

power balance, will be called possible [19, 23, 24]. On a 

possible trajectory, the equation of motion may not be sat-

isfied. It appears that the invariability of the objects veloc-

ities along a possible trajectory is not necessary. It is 

enough to ensure their proportionality on this trajectory 

(not constant speed of the objects, but the relationship be-

tween them). 

The appearance of the extremum of the function that de-

termines the dependence of the potential energy change in 

the displacement of the object in question ( )оb оbW  

gives an estimate of its limit value and critical angle. If the 

kinetic energy of the object at time t0 exceeds the estimated 

margin of the potential energy variation, then we can ex-

pect stability loss at an angular displacement close to the 

critical one, in a time interval [8, 21-24]  
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0
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






 

  


        (18) 

where 
0( )оbK t – kinetic energy of the object at the time t0, 

( )оb оbW   – change in the potential energy of the ob-

ject as a function of its deviation from its position at time 

t0. If )( 0tKоб
 is selected equal to the change in potential 

energy that occurs from the initial position to its extreme 

value, at which ( ) 0оbK t  , the motion on the interval (t0 

– t) will be along the limiting trajectory, where the stopping 

point coincides with the time when the potential energy ex-

tremum is reached. These estimates can be used to make 

control decisions to ensure stability at time t0. 

These considerations can form the basis of the algorithms 

designed to estimate the parameters of limit shock disturb-

ances. A momentum disturbance is characterized by the 

values of velocity deviations at the time of disturbance 

elimination t , which determine the distribution of 

changes in the momentum and kinetic energy of objects in 

the system.   
The distribution of momentum across the system (i.e. the 

relationships between the momentums of different objects) 

depends mainly on the place of application of the disturb-

ance. If we focus on a specific distribution of the momen-

tum at some severity of the test disturbance that does not 

lead to a stability loss, the increase in its severity can be 

modeled by a proportional increase in the amplitude of the 

momentums of objects due to an increase in the duration of 

the emergency. The severity of the test disturbance is char-

acterized by the kinetic energy of oscillations, which is ac-

quired by the system during the interval of the momentum 

action 

        .test test test

first reg loc

s

K t K t K t        (19) 

Let us consider a possible trajectory of motion that begins 

at the moment t+0 (characterized by the momentums of ob-

jects at this time) and continues until the stability loss. The 

object, whose potential function of displacement reaches 

the extremum first, is the culprit of the stability loss. The 

extreme value of the potential function of an unstable ob-

ject shows the value of the maximum kinetic energy of os-

cillations to be transferred to this object by the disturbance 
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at the initial time to cause its instability. Knowing the ki-

netic energy of the object that leads to stability loss, we can 

determine the corresponding momentum of this object. The 

ratio between the object momentum limiting in terms of 

stability at the initial time and the object momentum calcu-

lated with a test disturbance 
lim

оb  

 
lim lim

lim ,оb оb оb
оb test test

оb оb оb

J

J


 
 

 
                               (20) 

shows the relationship in which the momentums of all ob-

jects should change when the severity of the test disturb-

ance changes to the level necessary for the loss of stability 

of the object in question. Then the value of the limit dis-

turbance (the maximum kinetic energy of oscillations) can 

be determined based on the information about the test dis-

turbance                                

         
2 2

lim lim lim .test test

first оb reg оb loc

s

K t K t K t              (21) 

We will first dwell on the estimation of maximum mo-

mentum disturbances in the first cycle of swings. This 

means that the consideration is given to the processes of 

the first quarter of the oscillation period, during which the 

maximum angular displacement of objects relative to the 

initial position occurs. The result of the momentum action 

is the formation of a momentum distributed across the sys-

tem
i gi iJ M t     by the time of the restoring 

switching t . With the known distribution
гiiJ   , we 

determine   t0   – variation in the velocity of the cen-

ter of inertia of the system and the magnitude 

   tt 0гii0   – deviations of the ma-

chine rotational velocities from the center of the inertia of 

the system. These deviations determine free motions in 

translational (  t0  ) and in oscillatory (  ti0  ) 

degrees of freedom of the system, respectively.   

Since only the relationships between the momentums are 

important for the calculations, the magnitude t , unknown 

in advance, can take any value (when it changes, the rela-

tionships between the momentums of objects do not 

change). In practical calculations, it is convenient to 

choose it equal to unit. Emphasizing this circumstance, we 

denote this value as
calct . 

Let us choose one, for example, the k-th oscillatory de-

gree of freedom and corresponding oscillator. Oscillatory 

impulses
i0iJ   split between its synchronous and local 

motions. This means that each of the subsystems of the cor-

responding oscillator acquires a certain impulse with its 

sign and amplitude. Since we consider a certain disturb-

ance, in the general case, the adjacent subsystems acquire 

the momentums that are not necessarily of an opposite 

sign. The oscillatory structure of motion for this emer-

gency, characterized by antiphase motions of the adjacent 

subsystems, is obtained from the oscillating structure after 

the merger of its adjacent subsystems with the same mo-

mentum signs. The kinetic energy of the oscillatory motion 

under this disturbance will be divided into regional and lo-

cal components 

     ,osc calc reg calc locs calc

s

K t K t K t             (22) 

what is characterized by the ratio
kN : 

 

 
,

reg calc

k

osc calc

K t
N

K t

 

 

that determines the proportion of 

regional (synchronous) motions of the considered structure 

in the kinetic energy of oscillations. The distribution of the 

oscillation energy between synchronous machines of the 

system can be considered in terms of various oscillators of 

the system, in each of which the weight coefficient of the 

energy of synchronous motions is determined. We can as-

sume that the oscillators in which the weight of synchro-

nous motions has the maximum value, will belong to the 

dominant part of the excited oscillators. In this case, it 

means that these oscillators maximally resonate with the 

disturbance distributed in the form of a momentum. 

In the event that the assessment reveals an instability 

structure, the value 
emergt of the duration of the consid-

ered emergency leading to a loss of stability is determined 

with the revealed structure of motion. The relationship

emerg

calc

t

t






 shows in what ratio the momentums of the 

objects of the oscillatory structure must change at the initial 

time in order to cause a loss of stability with this structure 

of unstable motion. This allows us to estimate the maxi-

mum kinetic energy of oscillations in terms of stability
lim

oscK , which the disturbance should give to the oscilla-

tory degrees of freedom of the system for the stability loss 

to occur with the revealed structure of motion 

        lim 2 .osc emerg reg calc locs calc

s

K t K t K t
 

        
 

    (23) 

In the described algorithm the emergency is represented as 

a short-term impulse action, during which the moment im-

balances remain unchanged. 

The assumption about the constancy of the moment im-

balances makes it possible to approximately determine the 

kinetic energy of the oscillations  oscK t  , input to the 

system in case of an emergency (independent of the system 

structure) as a quadratic function of its duration t

   
2 2

2 20.5 0.5 .i E
osc i i0

i i i E

M M
K t J t t

J J

  
        

 
   (24) 

The coefficient at the squared time interval 2t  in (24) 

characterizes the susceptibility of the oscillatory degrees of 

freedom of the system to the emergency and determines the 

processes of kinetic energy accumulation in them.  
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An important characteristic of an unstable motion is the 

time necessary to achieve critical displacements after elim-

ination of limit disturbance in terms of stability. This value 

can be determined with the help of relationship (18), in 

which the kinetic energy is equal to a certain maximum ki-

netic energy of the subsystems of the instability structure, 

and the potential energy is equal to the braking work (taken 

win an opposite sign) performed on the way of these sub-

systems after elimination of the emergency before they 

reach the limiting displacements. In addition, we can simi-

larly calculate the time to reach the limiting displacement 

for the disturbances beyond limits.  

Having carried out similar calculations for other oscilla-

tors of the system, we obtain an estimate of the spectrum 

of limit disturbances in the considered place of the system 

that lead to stability loss in various cutsets si of the power 

system in oscillators named «fi». It is convenient to display 

the calculation results for multiple oscillators on an energy-

time diagram. An example of such a diagram is shown in 

Figure 2 for three dominant oscillations of a certain power 

system (115 nodes, 33 synchronous machines) at a short 

circuit in a selected node. 

The spectrum of "small" self-oscillations of this system 

contains 32 components. The oscillations of the first ten of 

them have non-star-like structures. The horizontal line 

segments show the energy levels of the kinetic energy of 

the oscillations, which the system must have after 

switching off the short circuit for the development of 

instability of various oscillators (energy levels of excitation 

of the instability structures of oscillators). The length of 

these segments shows the time that will pass after the short 

circuit is switched off until the moment of stability loss 

under the limit disturbance. With the disturbances beyond 

the limit, the time to reach the critical point decreases 

(energy-time "tails" of the beyond–limit disturbances that 

are directed upwards and to the left appear in each 

horizontal line). The cutsets of instability structures are 

given in the form of numbers of subsystems of oscillating 

structures between which this cutset is located. The 

parabola going from zero shows the dependence of the 

acquired kinetic energy of oscillations on the duration of 

the emergency. 

An analysis of the cutsets of the three obtained instability 

structures in the electrical network of the system shows that 

for the considered emergency all of them coincide (this is 

the same cross section). As is seen from the Figure, with a 

short circuit lasting less than ~0.2 seconds, the stability loss 

will not occur. With an increase in the short circuit duration 

above 0.2 sec, the stability loss associated with the 

oscillations of the oscillating structure of 1,6884 Hz, will 

manifest itself in the first place. The Figure also 

demonstrates that with a short-circuit duration of ~0.2 

seconds, the stability will be lost in ~1.5 seconds after the 

short-circuit clearing, i.e. there is a time resource for 

emergency control to maintain stability, equal to 1.5 

seconds. Accordingly, with the growth of the short circuit 

duration, this time resource is reduced. Testing the 

obtained results by direct calculation of the transient 

process shows their good match, both in terms of the short-

circuit duration limit, and the location of the out-of-step 

cutset. 

If we assume that the oscillatory structures of the spatial 

oscillators in the second cycle of oscillations coincide with 

the oscillatory structures of the first cycle, and the 

momentums of the subsystems only change sign, then it is 

also possible to estimate the stability loss conditions in the 

second cycle. The algorithm for this calculation does not 

differ much. The differences are only in calculating the 

time when the subsystems of the instability structure reach 

the limiting displacements, since in this case it is necessary 

to take into account the time spent on the first cycle. 

Figure 3 shows the energy-time diagram of instability in 

the first and second swing cycles, calculated at a short 

circuit at another node of the same power system. Two 

dominant oscillating structures were considered, and it 

appeared for one of them (1.5521 Hz) that the stability 

could be lost in the second cycle. The corresponding curve 

is shown as a dotted line. It is seen that the instability in the 

second cycle of the cutset 1 – 4 of this structure develops 

over a long period of time. 
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Figure 2. Time-energy diagram of instability. 
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Figure 3. Time-energy diagram of instability in the first and 

second swing cycles. 
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With a larger magnitude of disturbance sufficient for the 

instability development in the first cycle, the instability 

will be observed in the form of a rapid development of the 

out-of-step conditions in the cutset 7 – 8 of the spatial 

oscillator 1,4983 Hz that does not coincide in the network 

with the previous cutset. 

The instability characteristics shown in Figure 3 can be 

confirmed by the calculation of transient processes in a 

sufficiently complete simulation of the power system 

(taking into account speed controllers, power system 

stabilizers and excitation systems, damping rotor circuits). 

In Figure 4, the results of calculation of the transient 

process in the power system is represented by hodographs 

of voltage vectors at different nodes of the system (only a 

fragment of its scheme is shown). The transient process is 

caused by the 0.2 s connection of a short circuit shunt at 

node 5220 (the short circuits at this node are represented 

by the energy-time diagram in Figure 3). The hodographs 

show that the out-of-step conditions in the system are 

developing in the cutset formed by lines 2200-4202 and 

4201-4203. Since nodes 4202 and 4203 are located 

practically in the centers of oscillation, lines 4205-4202 

and 4205-4203 can also be considered to be the out of step 

cutset (adjacent cutset). The state shown in the Figure is 

reached in 3.3 second after connecting the short-circuit 

shunt. 

Figure 5 demonstrates the calculation results for the 

transient process in the same scheme (the initial 

conditions) in case of a short circuit at the same node when 

it lasts 0.35 s. In the system, the out-of-step conditions are 

developing in the cutset constructed from the lines 5128-

5122 and 5128-5126 (or 5122-5124 and 5126-5124). The 

state fixed in the Figure occurred in 1.1 s after connection 

of the short- circuit shunt. 

In both examples, the voltage vectors in the out of step 

part of the system rotated a little more than one complete 

revolution with respect to the reference axis of the angles 

(which is represented by the longitudinal axis of rotor of 

the most powerful synchronous machine in the system). 

Considering the motion of the voltage vectors to the loss of 

stability, it can be established that in the first case this 

disturbance occurs in the second cycle of swings, and in 

the second – in the first cycle. With an intermediate value 

of the short circuit duration (between 0.2 and 0.35 sec.), the 

out-of-step cutset does not change its position and 

coincides with the first of the above cases. When the short 

circuit lasts less than 0.2 s no loss of stability is observed. 

Out-of-step cutsets obtained by constructing energy-time 

diagrams coincide with one of the cutsets identified in the 

calculation of the transient process in the considered 

emergencies. The situation presented in Figure 3 

determines the change in the position of the out-of-step 

cutset with an increase in the severity of the disturbance at 

some place of its location. It refers to the cases in which 

this change is associated with instability at different swing 

cycles. Such effects, however, can sometimes be observed 

within one swing cycle (usually, not the first). In this case, 

a more energy-intensive instability case outpaces the 

development of a less energy-intensive one, and the out-of-

step cutset is usually situated closer to the emergency site. 
 

 

Figure 4. Stability loss in the system under a short circuit at 

node 5220 with a duration of 0,2 second. 

Figure 5. Stability loss in the system under a short circuit at 

node 5220 with a duration of 0,35 second. 
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The described algorithm for estimation of limiting 

impulse disturbances is, in fact, an extension of the known 

equal areas method to the oscillatory structures, which can 

contain more than two subsystems. The use of a possible 

trajectory of motion allows us to calculate the kinetic 

energy stored in the stage of emergency condition in the 

objects of the oscillatory structure suitable for describing 

the motion after the emergency elimination (after restoring 

switching), based on the calculation of the work on the 

motion of these objects in emergency conditions. In this 

case, for the impulsive transients, the oscillatory structure 

of the post-emergency condition is based on the oscillatory 

structures of the pre-emergency scheme. The damping of 

the acquired kinetic energy is determined by the 

calculation of braking work of these objects in the post-

emergency conditions [23, 24]. These publications 

describe in more detail the method of calculations and their 

results for a particular system, up to the construction of 

power characteristics in the power-angle coordinates for 

the cutset with developing out-of-step conditions. 

IV. THE RESEARCH ON THE PROCESS OF SYNCHRONISM 

LOSS IN A POWER SYSTEM BASED ON INTEGRATION OF ITS 

EQUATIONS OF MOTION 

In addition to survey studies on stability, it is necessary 

to analyze the conditions of development and 

characteristics of unstable motion in terms of specific 

network structure, operating conditions, and emergency 

situations. This can be done in detail in the simulation of 

electromechanical transients in the power system based on 

the calculation of its equations of motion [25]. The 

resulting trajectories of the system satisfy the equations of 

the mathematical model and they can be attributed, on this 

basis, to the actual trajectories of motion. In this case, it is 

assumed that the mathematical model is adequate to the 

described object. 

Loss of stability is linked to the attainment of critical 

conditions under the mutual motion of objects in an 

inhomogeneous system. The detection of the oscillatory 

structure changing in time     in the transient process is 

based on the basic topological property of wave motion, 

namely, that its crests and troughs coexist in space. The 

boundaries between the crests and troughs can most likely 

be included in the out-of-step cutsets where loss of stability 

and loss of synchronism occur. Subsystems of oscillatory 

structure represent positive and negative half-waves. In 

general, these half-waves can represent the spatial 

distribution of accelerations, velocities, or displacements. 

The structural organization of motion is based on the 

formation of groups of synchronous machines moving 

relative to the center of inertia of the system in a similar 

way. Such groups (the cores of subsystems) form the areas 

of the system around themselves, and the voltage vectors 

at the nodes of these areas adopt the nature of the group 

motion [25]. Let us choose, for example, a sign of deviation 

of their rotation speed from the rotation speed of the center 

of inertia of the system 
0giΔΩ (t)  as a group feature for 

synchronous machines lying inside the selected area. This 

means that the sign of all variables 

 

                  0 0( )gi giΔΩ (t) t t                         (25) 

at time t must be the same for all machines in the group 

forming the core of the subsystem. The system nodes that 

fall under the influence of the group will be determined on 

the basis of a similar requirement for the signs of deviations 

 tΔ i0  of their individual frequencies  
 

dt

td
t i

i


  

from the rotational speed of the center of inertia of the 

system  t0   (the relative individual frequencies) 

                           
 

 ,00 t
dt

td
tΔ i

i 


                     (26) 

where  ti  the angle of the voltage vector at the node 

relative to the fixed axis. When calculating 

electromechanical transients, the angles of the voltage 

vectors and the rotors of synchronous machines are 

measured relative to a somehow selected common 

reference axis, usually a rotating one. The time derivatives 

for the angles measured in such a way are calculated using 

the following relations: 
 

                             
 

   i

i ref

d t
t t

dt


                   (27) 

where  ref t  - the angular velocity of the reference axis, 

 ti  - angle relative to it. Then, with this measurement of 

angles, we obtain: 

          
 

   0 0 0 .i

i i ref

d t
Δ t t t t t

dt


        (28) 

 

One subsystem will include all the nodes of the system, 

at which the individual frequencies are either higher or 

lower than the angular velocity of the center of inertia of 

the system. 

To identify subsystems, we determine the boundaries 

between them. In this case, the attribute of the boundary tie 

connecting two adjacent subsystems becomes a different 

sign of deviations of the individual frequency at the nodes 

at its ends. If we assume all such ties of the system at time 

t to be disabled and make a topological analysis of the 

system to identify disconnected subsystems, the common 

feature for the resulting subsystems will be the same sign 

of deviations of individual frequencies within the 

subsystem, and any adjacent subsystems will be 

characterized by different signs of these deviations. 

The described algorithm allows determining the 

oscillatory structure of motion in the system as a function 

of time S(t)  . This oscillatory structure defines the spatial 

distribution of the relative velocities of the system as an 
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electromechanical wave, and highlights alternating areas 

that outrun or fall behind the center of inertia of the system. 

Relative displacements can also be used to determine the 

structure of motion. Since the stability of 

electromechanical oscillations is determined by the work 

carried out on the trajectory of motion, the studies usually 

consider the displacement wave, which determines the 

work done by redundant moments in the transient process 

[25]. 

Displacement of the voltage vector of the node relative to 

the center of inertia of the system, accumulated on the 

interval (t0-t)  00 , tti  given (28) will be determined as 

follows:                        

       
0 0

0 0 0 0 0, .

t t

i i i i ref

t t

t t Δ dt t t dt          
        (29) 

The calculation of the integral on the right-hand side gives: 

     
   0

0 0 0, ,
k gk gk

k
i i i

E

J t t

t t t t
J

 

  

  
   


          (30) 

where    0gk gkt t   - change in the angle of the k–th 

synchronous machine on the interval (t0-t), and the 

summation is performed for all synchronous machines of 

the system. The angles of voltage vectors and angles of 

rotors of synchronous machines measured relative to the 

reference axis used in the calculation are used in the right-

hand part of (30).  

After 0i  is calculated for all nodes of the system, and 

the ties connecting the nodes with different signs of these 

deviations are marked, we can similarly identify the 

oscillatory structure of the system motion. Here, we 

employ the relative displacements accumulated over a 

finite time interval, and represent the result of the motion 

of the system distributed in the nodal space by an 

electromechanical displacement wave. The alternating 

areas of the system are shifted with respect to the vector 

rigidly connected with the center of inertia of the system to 

the positive or negative sides (half-waves of integral 

relative displacements). 

Since the oscillatory structures are associated with the 

motion of large masses, they evolve rather slowly and it is 

possible to determine the time intervals during which the 

oscillatory structure is unchanged. The process of the 

oscillatory structure evolution in time and space is 

associated with an unsteady wave process in a significantly 

inhomogeneous system. Of greatest interest are the 

structures that form in the system by the time when the 

development of the out-of-step conditions starts. It is these 

structures that must be considered to determine emergency 

control. 

The relations for the determination of kinetic energy of 

regional motion and its total time derivative for the variable 

oscillatory structure have the form: 

                    
 

 2

0 ,
2

s

reg s

s t

ΔΩ t
K S t J                       (31) 

                         
 

 0 0 .
reg

s s

s t

dK
S t M t ΔΩ t

dt
          (32) 

It can be seen that the determination of the regional 

characteristics of the transient process in a variable 

oscillatory structure is reduced to a simple recalculation of 

the relative velocities and moments for the newly identified 

subsystems. These relations can be interpreted as a way of 

understanding the speed, power and energy characteristics 

of the transient process over its entire time period in the 

context of the structure  tS that has developed by a 

certain time t. 

The kinetic energy of an object on the interval (t0-t) may 

increase or decrease. In the first case, the work is positive, 

in the second - negative. Since work A can be linked to a 

change in potential energy U  (according to the definition 

of the latter as AU  ), then the positive work 

corresponds to a descent into a potential well. Negative 

work corresponds to an ascent from the potential well. It is 

worthwhile to note that the idea of a potential well due to 

the presence of non-potential forces in the power system is 

not strict, but it makes it possible to increase the visibility 

of the physical picture of oscillations and instability. The 

study of the structural organization of oscillations, that 

involves the identification of regional objects 

(subsystems), allows determining the spatial and temporal 

characteristics of transmutation of kinetic and potential 

energy of the system in the transient process. 

The physical cause of the instability in the transient 

process is the insufficient resources for braking divergent 

objects (subsystems). In the case of structurally organized 

motion, this means that the kinetic energy of regional 

motion is too large and the synchronizing torques are 

unable to stop the diverging subsystems. Using the idea of 

an object moving in a potential well, we can say that the 

instability is associated with the fact that this object has 

attained the maximum of a potential function, behind 

which there is another potential well, with a different 

equilibrium position (if it exists) [25]. 

Let us consider pairs of coupled subsystems of the 

oscillatory structure. These pairs can contain both 

subsystems of oscillatory structure and subsystems formed 

as a result of complete or partial merging of subsystems 

located on different sides of the considered cutset. Thus, 

the pair can cover part of the system or the whole system. 

For simplicity, we assume that the subsystems included in 

it have numbers 1 and 2. 

Determine a relative velocity of the center of inertia of 

the subsystem that contains both subsystems of the pair 

relative to the center of inertia of the system 
021 )(ΔΩ 

on 

the basis of the relation:  

02121202101 )(ΔΩ)JJ( = ΔΩJΔΩJ  ,  

where  tΔΩ10
and  tΔΩ20

are the deviations of the 

velocities of the first and second subsystems of the pair 
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relative to the center of inertia of the system; 
1J and 

2J

are the moments of inertia of the subsystems. Deviations 

of the velocities of the subsystems from the velocity of the 

center of inertia of the pair 
)(ΔΩ 211 
and 

)(ΔΩ 212 
are 

equal to: 

      
02110211 )()( ΔΩΔΩΔΩ   ,  

02120212 )()( ΔΩΔΩΔΩ   .                          (33) 

For these velocity deviations, the ratio will always be 

satisfied: 

         021222111  = ΔΩJΔΩJ )()(   .               (34) 

Two equations of motion of the subsystems of the pair 

relative to its own center of inertia will have the form: 

                                 

,    (35) 

 ,    (36) 

where 
)(ΔM 211 
and

)(ΔM 212 
 - the relative excess 

moments of subsystems 1 and 2 determining their motion  

near the center of inertia of the pair, and 

)()( ΔMΔM 211212   . 

The kinetic energy of the regional oscillations 

(1 2)regK 
of the pair is determined  as a sum of the kinetic 

energy of the two subsystems: 
2 2

(1 2) 1 10 2 20

2 2 2

1 2 (1 2)0 1 1(1 2) 2 2(1 2)

0.5 0.5

0.5( ) 0.5 0.5

regK J ΔΩ J ΔΩ

J J ΔΩ J ΔΩ J ΔΩ



  

  

   

      (37) 

As is seen from (37), part of the kinetic energy is 

associated with the general motion of the pair, and there is 

a component determined by the internal regional 

oscillations of the subsystems of the pair near its center of 

inertia
int(1 2)K 

 

2 2

int(1 2) 1 1(1 2) 2 2(1 2)0.5 0.5K J ΔΩ J ΔΩ         (38) 

It follows from (35) and (36) that the change 
int(1 2)K 

is equal to the integral of work of  the relative moment on 

the mutual displacement of subsystems 
12 : 

      
 

 






 

t

t

)(

t

t

)int( dΔMdK
12

0120

1221121





 ,           (39) 

where   dtΔΩd 1212  and 

201021221112 ΔΩΔΩΔΩΔΩΔΩ )()(  
. 

The known method of transformation of differential 

equations of motion applied to the pair leads to a similar 

relation. The first of them is multiplied by J2, the second - 

by J1, then, the second is subtracted from the first one. As 

a result, we obtain one differential equation of mutual 

motion of subsystems: 

                  12

1(1 2)red

d ΔΩ
J ΔM

dt


                        (40) 

The excess moment in the right-hand side of (40), which 

determines the mutual motion of the subsystems, coincides 

with the excess moment acting on the first subsystem in its 

relative motion near the pair's center of inertia. The value 

1 2

1 2

red

J J
J

J J




is the reduced moment of inertia. Kinetic 

energy of mutual motion is described by equation (40):
2

120.5 redJ ΔΩ .  

If (40) is converted into an integral relation of type (39), 

it can be established that the kinetic energy of mutual 

motion of the subsystems of the pair is equal to the total 

kinetic energy of oscillations of the subsystems of the pair 

relative to its own center of inertia [25]. 

The possibility of calculating the work for pairs of 

adjacent subsystems of the oscillatory structure depending 

on their relative displacement 12Δδ  (i. e. on  one 

coordinate), allows a schematic presentation of the 

potential well  bounded on both sides by potential barriers 

that determine a margin for negative work on the ascending 

sections of the trajectories of the first and second cycle 

(Figure 6).  

 

 

 

 

 

 
 

 

 

Figure 6. Determination of the excess kinetic energy leading to 

the loss of synchronism between the subsystems of instability 

structure in the second oscillation cycle. 
 

 

If in this Figure we display the kinetic energy acquired 

by the subsystems, its comparison with the heights of the 

potential barriers will allow us to judge about the loss of 

synchronism in the system in the first or second oscillatory 

cycles (Figure 6 shows a case of instability in the second 

oscillatory cycle). The value of the kinetic energy, that was 

not converted into potential energy (in negative work), 

excK  acts as excess kinetic energy, which is the cause of 

the instability. 

 The identification of the loss of dynamic stability with 

subsequent development of out-of step conditions and 

location of the out-of-step cutset should be performed 

automatically. Algorithms for such an analysis should be 

built into the program for calculation of transient 

processes. Note that these algorithms can be applied to any 

mathematical model used for numerical analysis of 

electromechanical transients. These algorithms should 

determine the main characteristics of the loss of 

synchronism in a power system for a given disturbance (if 
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the loss of stability occurs). The characteristics of the loss 

process can be: the time after which the out-of-step 

conditions start to develop in the system, the out-of-step 

cutset (or the cutsets under a multi-frequency out-of-step 

conditions), the excess kinetic energy that caused the 

development of the out-of-step conditions in this cutset. If 

stability is maintained, the algorithm should allow this to 

be established automatically. 

Identification of a subsequent loss of stability based on 

an analysis of the extreme values of work done during the 

motion of an object is very difficult algorithmically. 

Therefore, the fact of a loss of stability is easier to establish 

based on the calculation of mutual displacements of the 

subsystems of a variable oscillatory structure. In the event 

that the mutual displacement of subsystems in the transient 

process reaches a certain limiting value, the development 

of an unstable motion is identified. 

To identify the instability and determine an out-of-step 

cutset, it is necessary to identify the inter-system tie (inter-

system ties) of the oscillatory structure, along which  the 

out-of-step conditions develop. Such a tie can be 

determined by the calculations of changes in mutual angles 

between adjacent subsystems of the oscillatory structure. 

For the adjacent s-th and m-th subsystems, the change in 

the mutual angle  0, ttsm  on interval (t0-t) is 

determined as follows: 

 

        

       

0 0 0 0 0

0 0

, , ,

,s m

sm s m

k gk gk k gk gk

k k

s m

t t t t t t

J t t J t t

J J

  

   

     

       
 

 
           (41) 

 

where sk  and mk  - sets of generator nodes of the s-th and 

m-th subsystems. In this case, the intersystem tie in which 

the out-of-step conditions occur can be identified on the 

basis of: 

                                 .180, 0
 ttsm                           (42) 

 

If the disconnection of the detected intersystem tie leads 

to the division of the system into two separate parts, the 

determination of the out-of-step cutset is completed. 

Practical calculations show that the oscillatory structures 

with respect to displacements, which emerge in the system 

immediately before the out-of-step condition and at the 

initial stage of its development get extremely simplified. 

They often consist of two subsystems, and rarely of three 

and four subsystems. The cases of ring structures have not 

been observed in computational practice yet. 

With instability between two adjacent subsystems of the 

oscillatory structure formed in the system, the development 

of the out-of-step conditions begins, and it is accompanied 

by an increase in their mutual angular displacement. We 

call such a pair of subsystems unstable [25]. Figure 7 

shows an unstable pair. Depending on the number of 

subsystems of the oscillatory structure, the unstable pair 

can cover a part of the system or the whole system. 

 
Figure 7. Unstable pair. 

 

The oscillations of the subsystems of an unstable pair 

(with the numbers of subsystems 1 and 2) relative to its 

center of inertia are described by relationships that are 

similar to the analogous relationships for a simple two-

machine scheme. The difference is that the excess moment 

determining the mutual motion of the subsystems depends 

on the total trajectories of the motion  (regional plus local) 

of synchronous machines of the entire system (both outside 

and inside the unstable pair), and not only on the regional 

mutual displacement  012 , tt , as it would be for a real 

two-machine scheme [25]. 

A potential well can be constructed on the basis of the 

calculation of the transient process by plotting the kinetic 

energy of mutual oscillations at a certain time taken with a 

negative sign along the ordinate axis, and the mutual angle 

 012 t,t observed at the same time along the abscissa 

axis [25]. 

It is clear that the calculated potential wells reflect, in a 

different form, the same energy relationships that underlie 

the equal areas method, different from the latter by using 

actual trajectories. At the same time, the changes in 

potential energy on these trajectories are calculated not by 

calculating the work (which is difficult), but by 

determining the kinetic energy changes (which is much 

easier in algorithmic terms). The equal areas method is 

used to estimate the limit disturbances. The study of 

potential wells for the unstable pair is focused on the search 

for emergency control preventing the loss of stability. 

Due to the presence of non-potential forces in the power 

system, the notion of a potential well is not strict. It is 

illustrative and in good agreement with everyday 

experience. The Figures below for the calculated potential 

wells are simplified. They, for example, do not show  the 

discrepancy between the ascending and descending 

branches of the same swing cycle associated with damping,  

and the manifestations of local motion. Figure 8 shows the 

calculated potential well for the loss of synchronism in the 

first swing cycle. The area 1-2 is the downward slope of 

the potential well in the case of emergency conditions, 2-3 

is the ascending branch of the first swing cycle in the post-

emergency conditions. The sequence of positions in the 

potential well is 1-2-3. 

Figure 9 shows the calculated potential well under loss of 

synchronism in the second oscillation cycle. The area 1-2 

is a slope of the potential well in the case of emergency 

conditions, 3-2-4 - potential well in disaster mode. 

Js Jm

S M
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Subsystem 1 running out at the loss of synchronism in the 

first cycle of swings is lagging behind. The sequence of 

positions is 1-2-3-2-4. 

Figure 10 shows the steady mutual motion in the first and 

second swing cycles. The sequence of positions is: 1-2-3-

2-4-2. These Figures are qualitatively identical for any 

pairs of adjacent subsystems of oscillatory structure (there 

is no unstable pair). If the stability is maintained in the 

subsequent cycles of swings, then, in the presence of 

damping, we can talk about reduction in the size of the 

potential wells of these pairs in the subsequent stages of 

motion in the vertical and horizontal directions (they are 

pulled into the point of stable equilibrium of the pairs in 

the post-emergency conditions). With negative damping 

(self-oscillation), the sizes of some potential wells 

increase, and their shape is distorted until an unstable pair 

appears. 

At a fixed oscillatory structure (detected, for example, at 

the beginning of the out-of-step condition development), 

which is used to analyze the motion throughout the entire 

transient process, starting from a disturbance, and at the 

moments of switching that are not accompanied by a 

change in the inertial mass, the velocities of the inertia 

centers of the system and subsystems, as well as their 

kinetic energy are unchanged. With changes in the rotating 

masses, these characteristics of motion also change.  

The possible impact of emergency control on the type of 

the calculated potential well is shown in Figure 11. It 

demonstrates the case where the uncontrolled system falls 

out of synchronism in the second cycle of the oscillation 

shown in Figure 9. At the moment represented by position 

5, located at the end of the descending branch of the first 

swing cycle, the generators are switched off. The change 

in kinetic energy between positions 5-6 is associated with 

a decrease in the inertial mass of the run-out subsystem. 

The area 6-7 represents an ascending stable branch of the 

second swing cycle. The sequence of positions inside the 

potential well in the first and second cycles of swings is 1-

2-3-5-6-7-6. 

V. CONCLUSION 

The wave nature of electromechanical oscillations 

determines the priority of the system motion structure in 

the formation of the transient process and its stability. In a 

complex system, it is the structure of the motion (what 

oscillates with respect to what), which is the main goal of 

 
Figure 8. The calculated potential well under loss of 

synchronism in the unstable pair cutset in the first oscillation 

cycle. 

 

 
Figure 9. The calculated potential well under loss of 

synchronism in the unstable pair cutset in the second oscillation 

cycle. 
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Figure 10. The calculated potential well of the pair of 

subsystems under steady motion in the first and second 

oscillation cycles. 

 
Fig. 11. Change in the calculated potential well under 

successful emergency control action preventing loss of 

synchronism in the second oscillation cycle. 
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the study. It determines all the essential aspects of the 

process, starting with its specific features and stability and 

ending with the location of the out-of-step cutset. The 

wave approach to identifying the spatial structure of 

electromechanical oscillations allows us to study the 

processes of loss of synchronism in power systems under 

the influence of disturbances. 

The study of these processes is based on the energy 

relations for structurally organized motion. The main 

method is to replace the problem of stability analysis in its 

classical formulation, which does not use the concept of 

"the structure of motion", with a set of small problems of 

stability analysis of structurally organized forms of the 

studied motion. 

The description of structurally organized motion is based 

on the use of hierarchically built systems of coordinates. In 

the simplest case, we focus on the following: the 

translational motion of the center of inertia of the system, 

the oscillatory motion of the centers of inertia of 

subsystems relative to the center of inertia of the system, 

and synchronous machines relative to the centers of inertia 

of subsystems. 

Using this hierarchical structure, we can analyze the 

processes of loss of synchronism in complex power 

systems on possible (without integration of equations of 

motion) and actual (with integration of equations of 

motion) trajectories by determining kinetic and potential 

energy of oscillations with identification of their regional 

and local components.  

The loss of synchronism entails two physical processes: 

- the process of formation and development of the 

oscillatory structure of motion as a consequence of the 

wave electromechanical process that determines the 

interactions within the system; 

- the process of loss of stability of parallel operation 

(angle stability) between the arising adjacent subsystems 

of the oscillatory structure of motion developing in space 

and time. 

The study of the processes of loss of synchronism is 

carried out on the basis of interrelated algorithms designed 

to determine: 

- the energy characteristics of stability limit disturbances 

for survey studies using energy-time diagrams;  

- the excess kinetic energy resulting in an unstable pair 

of subsystems for the analysis of stability in specific 

emergencies and the choice of emergency control; 

- the time of the unstable motion development; 

- the location of the out-of-step cutset. 
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