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Abstract — With the development of energy coupling 
devices such as combined cooling/heating and power 
(CCHP), gas turbines and electricgas transfer device, 
various energy subsystems are closely coupled into an 
integrated energy system (IES). Whether it is a power 
system, a natural gas system or a heating system, a 
failure in any of them will threaten the safe and reliable 
operation of the entire IES. Given the lack of unified 
identification and location of IES faults in existing 
research, this paper presents a method of unified 
identification and location of faults using big data 
analysis. First, the energy hub is used as an energy 
coupling element, and the dynamic system of natural 
gas and the model of the regional heating system are 
established. Combining the analysis of the interaction of 
other subsystems with other energy systems, the typical 
features of energy subsystems collected by intelligent 
terminals are extracted, and the heterogeneous 
features are spatially and temporally merged into a 
high dimensional spacetime state detection matrix. The 
matrix is nonlinearly dimensioned using the Isomap 
algorithm, and the IES fault identification and location 
is performed based on the value of the local sparsity 
coefficient (LSC) value and the node association. The 
proposed method is validated by the case study.

Index Terms — integrated energy system; interaction; 
fault identification; fault location; big data

I. Introduction

With an increase in energy consumption and the 
distributed generation (DG) accessing to the grid, the 
limitations of the existing energy system architecture 

and the contradiction between supply and demand are 
highlighted. The Energy Internet (EI) can provide a viable 
solution [1]. EI transforms or even subverts the existing 
energy industry, to achieve a decentralized mode of 
production, and promote the large scale development of 
renewable energy. Integrated energy system (IES) [2,3,4] is 
an essential physical carrier of EI [5], including electricity, 
gas, heat (cold) and other energy sources, which is the key 
to realize the multienergy complementary and cascade 
utilization of energy.

The safety and stability of the IES determine the 
normal operation and function of EI. The subsystems of the 
IES are tightly coupled, if the power grid fails, the state of 
the coupling unit (energy hub) will be affected, which will 
lead to a change in the state of the natural gas network and 
the heat network [6], and vice versa. Therefore, no matter 
which subsystem fails, this may lead to cascading failures, 
affect other energy subsystems, and ultimately threaten the 
economic and reliable operation of IES. Due to differences 
in physical characteristics, many sophisticated protection 
methods in a specific system are challenging to be applied 
to other subsystems. Furthermore, due to the high degree 
of coupling among subsystems, it is difficult to unify the 
identification of faults in the power grid, natural gas or 
heating  system.

The papers [79] put forward several methods of 
distribution network protection, such as using state 
estimator based parallel synchronous phasor measurements 
to detect and identify faults in real time. The failure of 
natural gas pipelines is identified based on the failure 
probability index [10]. An artificial intelligence method is 
proposed to detect the leakage fault of the heat network 
[11]. In [12], an electric-gas IES model is proposed to 
assess the impact of natural gas regasification terminals on 
the electricity and gas sector in Colombia. A framework, 
consisting of the natural gas transient model and power 
system steadystate model, is established based on AC 
optimal power flow [13]. In [14], the interaction between 
electric and heating based on cogeneration technology is 
simulated to ensure the safety of energy supply. However, 
these studies focus  either on the single energy subsystem, 
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or are limited to the study of interaction among systems.
Considering that the IES has the characteristics of 

rich data and low-value density [1], it is hard for the 
traditional protection methods to meet the requirements of 
IES. In view of this, based on the detailed analysis of the 
fault characteristics of IES, this paper proposes a big data 
analysis method based on the Isomap algorithm [15] and 
the local sparse coefficient (LSC) [16].The information 
uploaded by the terminals is used to integrate the multiple 
subsystem features into a comprehensive feature. Then, the 
multidimensional matrix is formed by data preprocessing 
and data aggregation, and the matrix is nonlinearly 
dimensioned by Isomap. Finally, the LSC value of each 
node is calculated based on the LSC method, and the 
fault of IES is located. This method can break the barriers 
between networks and unify the identification of faults and 
areas where they occur in power grid, natural gas and heat 
grid. The proposed method is validated by the case study.

II. Integrated energy system modeling

A. Natural Gas Network Modeling
The natural gas network is a typical pipeline network 

with apparent delay [17]. To improve the accuracy of the 
simulation results, the dynamic equation is used to describe 
the gas pipes. The following continuity equation and the 
motion equation [18] are obtained by:
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where ρ is the gas density, p is the absolute pressure, ω is 
the velocity of the pipeline flow, x and t are distance and 
time respectively, g is gravity acceleration, α is the angle 
between pipe and the horizontal line, d is pipe radius, λ is a 
coefficient of friction.

The linearized method [19] is adopted to solve the 
equation. Assuming that the height of the pipeline is 
unchanged, this means the fourth item in the equation of 
motion is zero. Furthermore, ignoring the convection item 
(the second item), this item exists only when the fluid 
velocity is near the sound velocity. Let M represent  A, 
therefore, the equation can be changed into:
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where M is the mass flow, A is the cross-sectional area of 
the pipe.

To linearize the model, we use the average gas velocity 
ϖ [19] to approximate the square item of ω in (3):

 (1) 

Substitute (4) into (3): 
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The state equation can link the gas density and pressure. 
This work adopts a simple relationship (6) between the 
pressure and density using the sound velocity c

 (6) 2p c r=

Finally, the Wendroff difference method is used [20] to 
approximate (2) and (5), and get the following equations:
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B. Heat Network Model
In the heat network [21], the hydraulic conditions are 

used to describe the distribution of flow and pressure, and 
thermal conditions are used to describe the distribution of 
temperature and heat supply.

1) Hydraulic Conditions: The resistance loss in the heat 
network is calculated by

   (9) 
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where ΔP is the loss of the pipeline and ΔPf is the loss of 
resistance along the pipe, ΔPj is the local resistance loss of 
the pipe, λR is the resistance coefficient along the pipeline, 
D is the inner diameter of the pipeline, ρ is the density of 
fluid, k is the roughness of the pipeline, R is the average 
specific friction of the pipeline, L is the pipe length, α is the 
equivalent coefficient.

The loss of heat dissipation of the pipe is

http://esrj.ru/


16

Energy Systems Research, Vol. 1, No. 3, 2018Yong Li et al.

(14) 2 ( )
1 1 4ln ln

T

o

m i T i

t tq D h
D D

p

l l

-
=

+

where t is the temperature of the pipeline, tT is the 
temperature of the soil layer, λm is the thermal conductivity 
of the thermal insulation material, DO and Di are the outer 
diameter and the inner diameter of the insulation layer of 
the pipeline, respectively, λT is the thermal conductivity of 
the soil, h is the buried depth.

The heat loss in one pipeline is converted to mass flow:
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where L is the pipeline length, Cp is the specific heat 
capacity of water, Δt is the temperature difference between 
the supply and the return water.
2) Thermal Conditions: The relationship between heat 
power and temperature can be described as:

  (16) ( )p s oC M T TF = -

where Φ is the thermal load, Ts is the supply water 
temperature, To is the return water temperature.

Considering the heat loss of the pipe, its temperature 
calculation formula is:
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where Tstart and Tend represent the water temperature of the 
incoming and outgoing pipes, and Ta is the ambient tem-
perature.

At the junction point of the heat network pipe, its 
temperature is  calculated by:

  (18) ( ) ( )out out in inM T M T=å å
Considering the network topology, and coupling (16) and 
(17), we can obtain the following correlation equation for 
the temperature of the supply and return water:

  (19) 
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where Cs and Cr are the temperature correlation matrix of 
supply and return water node respectively, bs and br are 
constant vectors.

Heating loads are expressed by

  (21) ( )l l l in outQ K V T T= -

where Kl is the volume index and Vl is the volume of room.
C. Energy Hub Modeling
Energy hub [22] is a crucial coupling part of IES, and 

can be composed of power transformers, microturbine 

(MT), air conditioners (AC) and heat exchangers (HE). 
The mathematical model can be expressed as follows:

  (22) 
T MT e

AC gee
gAC MT HE

h AC gh

(1 )   0

       
h

P
L

P
L

P

n h h

n h h h

é ùé ù-é ù ê úê ú=ê ú ê úê úë û ê úë û ë û

where Le and Lh respectively represent the electrical load 
and heat load supplied by the energy hub,vAC is the partition 
coefficient, ηT is the efficiency of the transformer, ηAC is the 
energy efficiency ratio of AC, ηMTge and ηMTgh respectively 
represent the efficiency of natural gas conversion from MT 
to electrical and thermal energy, ηHE is the efficiency of the 
HE. Pe, Pg and Ph are the power, natural gas and heat inputs 
in the energy hub, respectively.

The gas turbine model uses a split shaft gas turbine [23] 
and increases the fuel supply system, as shown in Fig.1.
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Fig.1. Model of a split shaft gas turbine.

 

Fig.2. Flowchart of fault location algorithm for IES.
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III. Fault location algorithm 

A. Algorithm Design
The proposed fault location algorithm for IES has the 

following four parts: data preprocessing, data aggregation, 
data mining and fault identification. The flowchart is 
shown in Fig. 2.

B. Data Preprocessing 
1) Select the Characteristics. According to the difference 

in fault characteristics of each energy subsystem, three-
phase current, negative sequence current, zero sequence 
current, active power and reactive power are selected 
as characteristics of power system. The pipe pressure 
and flow are characteristics of the natural gas system. 
The heat network flow, supply water pressure, supply 
water temperature, backwater pressure and backwater 
temperature are the characteristics of heat network.

2) Construct Network Incidence Matrix. To reflect the 
topological relationship of IES, the nodes in the system are 
numbered to determine the area constituted by the nodes 
and adjacent nodes.

3) Standardize the Data. To eliminate the influence of 
the dimension and the quantity of the characteristic, the 
standardization of deviations is used:
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where Sj represents a dataset and Sj
i represents a datum in 

the dataset.
4) Differential Processing. To enhance the difference 

between the fault node and the normal node, the correlation 
matrix is used to perform the differential processing of the 
adjacent nodes and obtain the single-period and single-
characteristic matrix Ci:
  (24) T

i iC A AT=

where A is the network incidence matrix; and Ti is a column 
matrix formed by the electrical features data.

C. Data Aggregation
1) Aggregation in Space. In the space, the single-period 

and single-characteristic matrix Ci is expanded into a single 
period and multi-characteristics matrix Wi:

 (25)1 2[         ]i nW C C C= !

2) Aggregation in Time. Wi is broadened into a multi-
period and multi-characteristics matrix W.

= [W W    1 2W   !  Wn ]   (26) 

D. Data Mining 

I) Dimensionality Reduction
Due to the huge amount of data in the high-dimensional 

matrix W and the information redundancy of the features, 
all nodes are clustered together in the high-dimensional 
manifold, resulting in very little difference. Therefore, it 
is necessary to reduce dimensionality. Here, the nonlinear 

dimensionality reduction using Isomap is introduced [15]. 
The traditional Euclidean distance matrix is transformed 
into a geodetic distance matrix, and then the nodes are 
connected to form the adjacency graph to simulate the real 
distance of high-dimensional manifold, and effectively 
reduce the dimension of the manifold. The calculation 
process is as follows:

1) Build an adjacency graph G. Based on the Euclidean 
distance between the adjacent nodes i and j of the matrix 
W, the nearest m nodes are selected as the sample nodes for 
each node. The edge of the graph is introduced to connect 
the adjacent nodes to construct a weighted graph G that can 
represent the adjacent relationship.

2) Calculate the shortest path of any two nodes on the 
adjacency graph G to get the geodesic distance matrix D. 
Its matrix elements are given by :
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where p is a node sequence of length L≥2 and 
p1=u，pL=v, pi∈D , (pi, pi+1) is the nearest neighbor 
pair of nodes.

3) The centralization matrix B is calculated by the 
geodesic distance matrix D, and its element bij is calculated 
as follows:
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4) Solve the two largest eigenvalues of matrix B and 

their corresponding eigenvectors:

(29) 
 (30) 

1 2 0l l³ ³
T ,1 2i i ix x il= £ £（）（）

5) Let X=[x(1), x(2)] and the matrix X be the representa-
tion of the high-dimensional matrix W in two-dimensional 
space after dimension reduction.

II) Data Outlier Mining.
After the non-linear dimension reduction of the matrix 

W, the distribution of the nodes can be directly reflected. 
In order to quantitatively analyze the anomaly of the 
faulty node, the LSC detection of the matrix X after the 
dimension reduction needs to be performed.The LSC [16] 
is an algorithm based on density to detect outliers, which 
can effectively mine local outliers.The steps are as follows:

1) Find the K-distance (Kdist(p)) between each node and 
its nearest node.

2) Calculate the Nk(p) of each node based on the Kdist(p):

(31)( ) { } ( ) ( ){ }/ ,k distN p q N p dist p q K p= Î £

where dist(p,q) denotes the distance between nodes p and 
q, and this node q is the nearest neighbor of node p.
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together in a high-dimensional manifold without outliers, 
and the LSC values of all nodes are also approximately 
equal to 1. When there are faults in the system, some nodes 
will be far away from other nodes and become outliers, and 
their LSC values will be much greater than 1. This paper 
sets the LSC threshold of 3 (the threshold setting is usually 
adjusted depending on the sample). When the LSC value 
of the node exceeds the setting value 3, it indicates that 
the fault occurs in the public area where the nodes with the 
abnormal LSC value are located.

IV. Case study

As shown in Fig. 3, the IES consists of an improved 
IEEE 14-node power system, a 16-node natural gas system 
in the Michigan area of the United States [24], an 11-node 
heat network [25] and an energy hub. In the power system, 
node 8 is powered by the energy hub, and node 9 provides 
power to the energy hub. In a natural gas system, node 19 
supplies gas to a split shaft gas turbine. Node 36 provides 
heat to the energy hub.

I. Interaction Between Faults in an IES

1) Short Circuit Fault of the Power System.
As shown in Fig. 4(a), a single-phase short circuit fault 

occurred between nodes 4 and 9, resulting in a change in 
the A-phase current of the line 4-9. In Figs. 4(b) and (c), the 
flow of natural gas from source nodes 15 and 24 increases 
correspondingly due to the function of energy hub. The 
heat network has larger hysteresis of flow and heat transfer. 
Therefore, the flow rate of heat sink node 31 is affected 
after a certain time, and the flow rate is slightly higher.

Fig.3. The model of integrated energy system.

3) Calculate the local sparsity rate of node p:
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where |Nk(p)| represents the number of nodes in the Kdist(p) 
of node p, and q represents any node in the Kdist(p).The 
smaller the local sparsity rate of the node, the greater the 
possibility of reflecting the node anomaly.

4) In the outlier monitoring, the local sparsity rate of 
the abnormal nodes should be less than the approximate 
average of all the nodes. In view of this, a threshold can be 
set to prune the candidate data sets, thus greatly improving 
the efficiency of the algorithm and reducing the candidate 
set. The threshold is called a pruning factor (Pf):
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5) After removing the normal nodes with local sparsity 

rate greater than or equal to the Pf from the candidate set, 
the LSC is used to judge whether the node is abnormal. The 
LSC value of the node is calculated as follows:
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E. Fault Identification
When there is no fault in the IES, all nodes are clustered 
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Fig. 4. The typical node waveform for power system fault. (a) A 
phase current of the line 4-9. (b) Gas source nodes 15 and 24 
flows. (c) Heat source node 31 flow.

b)

c)

a)

Fig. 5. The typical node waveform for natural gas system fault. (a) 
The power of synchronous generator node 8. (b) The pressure and 
flow of nodes 18 and 19. (c) Heat source node 31 flow.

b)

c)

a)

http://esrj.ru/


20

Energy Systems Research, Vol. 1, No. 3, 2018Yong Li et al.

2) Leakage Fault of the Natural Gas Network.

As shown in Fig. 5(b), a pipeline leak fault f2 occurred 
between nodes 18 and 19. As the natural gas flows from 
node 18 to node 19, when the leakage occurs, the leak point 
pressure gradually decreases, resulting in an increase in 
the flow from node 18. The pressure of node 18 descends 
to near the standard atmospheric pressure (101.325kPa). 
After the fault of node 19, the pressure also goes through a 
period of decline, but after a certain degree of decline, node 
24 will supply node 19 again, due to the dual air source. 
After the fault, the flow rate slightly increases, while the 
pressure slightly declines. As shown in Figs. 5(a) and 5 (c), 
due to the natural gas system failure, node 8 in the power 
system is restarted after short-term power-off. Node 31 of 
the heat network characteristic also fluctuates.

3) Water Leakage of the Heat Network.
As shown in Fig. 6(c), a water leakage of 20% occurs 

in the area f3 between nodes 33 and 34. Due to the reduced 
resistance, the total heat flow will increase. Except for the 
constant pressure of node 31, the pressure of other supply 
and return water nodes decrease (the underlined nodes in 
the Figure are the return water nodes corresponding to the 
supply water nodes). The pressure drop of nodes 33 and 34 
is the largest, and the farther the distance from the leakage 
point, the smaller the pressure drop. Compared with the 
normal condition, the hydraulic gradient of the pipe at the 
upstream of the fault becomes steeper and the hydraulic 
gradient of the downstream pipe slows down.

As shown in Figs. 6(a) and (b), the output of the gas 
turbine also increases due to the increased heat network 
flow. Therefore, the flow of natural gas source is higher.
The active output of node 8 is slightly increased.

II. Fault Identification Among IES

1) The Fault of Power System.
As shown in Fig. 7(a), the Isomap analysis shows that 

nodes 4 and 9 are distributed to the upper right side of the 
origin of coordinates, leaving the other nodes as outliers, 
while other nodes gather near the origin of coordinates. 
In Fig. 7(b), to reduce the error and increase the fault 
identification rate, this paper adjusts the k value of LSC 
repeatedly to determine the LSC value of nodes (the 
setting of k value needs to be adjusted according to the 
sample).The LSC values of power system nodes 4 and 9 
are respectively from 83 to 105 (k = 23 at peak), from 95 
to 112 (k = 22 at peak), both far exceed the threshold of 
3. However, the LSC values of other nodes are around 1. 
Therefore, the fault point is in the common area f1 with 
nodes 4 and 9 that belongs to the power system.

2) The Fault of Natural Gas Network.
As shown in Fig. 8(a), nodes 18 and 19 of the natural 

gas system deviate from the origin and become the outliers 
at the lower rate. Node 8 also deviates slightly, while the 
other nodes still gather near the origin of coordinates.The 

Fig. 6. The typical node waveform for heat network fault. (a) 
The power of synchronous generator node 8. (b) Gas source 
nodes 15 and 24 flows. (c) The pressure of the supply and the 
return water nodes.

b)

c)

a)
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Fig. 7. Fault identification results of the power system fault. 
(a) Analysis result of the Isomap.(b) Analysis result of LSCat 
different k values.

Fig. 9. Fault identification results for the heat network. (a) Analysis result of the Isomap. (b) Analysis result of LSC at different k values.

Fig. 8. Fault identification results of the natural gas system 
fault. (a) Analysis result of the Isomap. (b) Analysis result of 
LSC at different k values.
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LSC values of nodes 8, 18 and 19 are from 33 to 41 (k=18 
at peak), from 251 to 272 (k=18 at peak), from 240 to 262 
(k=17 at peak), respectively. The LSC values of other 
nodes are all around 1. Node 8 represents an abnormal state 
of short-time interruption caused by the natural gas system. 
Combined with the LSC values of nodes 18 and 19, the 
fault point is in the common area f2 with nodes 18 and 19 
that belongs to the natural gas system.

3) The Fault of Heat Network.
As shown in Fig. 9(a), nodes 33 and 34 become 

outliers, while the other nodes are clustered together. The 
LSC values of nodes 33, 34 are respectively from 67 to 79  
(k = 25 at peak), from 59 to 71 (k = 24 at peak). However, 
the LSC values of other nodes are around 1.Therefore, the 
fault point is in the common area f3 with nodes 33 and 34 
that belongs to the heat network.

The results of interaction and fault identification in 
the case studies indicate that the normal nodes converge 
into clusters, while the abnormal nodes become outliers. 
Meanwhile, the LSC value of abnormal node is much 
larger than that of the normal node. According to the 
above results, when faults occur in different networks, the 
proposed method can identify the faults of heterogeneous 
networks belonging to different agents in a unified way, 
which is conducive and convenient to the improvement of 
the IES security.

V. Conclusion

This paper proposes a method of state detection and 
fault location of IES. By combining the characteristics 
of power, natural gas and heat network, a comprehensive 
feature quantity is unified, which improves the accuracy of 
fault identification, and helps to locate the system faults. 
The interaction caused by a single subsystem after failure is 
studied, which provides a reference for fault identification 
and location. Based on the Isomap and LSC methods, the 
operating data of the IES are used to identify and locate the 
faults of IES.

This paper considers only one  type of faults, therefore 
the next step of the research will focus on different fault 
types.
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