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I. IntroductIon

The electric power industry is a basic industry for 
successful development and operation of the economy and 
it must be compatible with the consumer requirements for 
reliable power supply. Reliability is an important complex 
property of power systems, which is understood as their 
capability to supply power to consumers in a required 
volume and with a required quality. In the stage of power 
system expansion planning and direct operation, the required 
reliability level should be assessed and the control actions 
and plans on commissioning of new system components and 
retirement of outdated ones should be corrected in due time. 

The current situation is that the expansion of power 
systems leads to their aggregation, and an increase in the 
number of generating components and transmission lines. 
These facts, in turn, dictate the requirements for development 
of computational tools to assess power system reliability, since  
the indicated trends decrease the computational efficiency 
(from the viewpoint of the time spent and validation of 
calculations) in the process of system reliability assessment 
because of “outdated” methods and algorithms used. 

There are some models and software designed to assess 
power system adequacy: “MEXICO” model (EDF, France) [1, 
2], “SICRET” model (ENEL, Italy) [1, 3], “COMREL” model 
(University of Saskatchewan, Canada) [4, 5], “POTOK-3” 
model (SEI SB RAS) [6].  However, these models are not used 
now. It should be noted that the subject-matter of the adequacy 
remains topical and is evolving. Therefore, such models and 
modules as GE “MARS” [7], GridView [8], MARELI [9], 
PLEXOS [10], ORION / ORION-M model (Komi Research 
Center) [11], YANTAR model (ESI SB RAS) [12] evolve, 
gain popularity and are applied to adequacy assessment of 
present-day power systems. 

These products are used to determine the optimal reserve 
of the power generation and to choose a rational network 
structure for electric power systems. Therefore, the models 
represented by the linear minimization problem as well as the 
highly simplified problem statements distort the assessment 
results when determining the mathematical expectation of the 
electrical load undersupply to the system facilities, which, in 
turn, affects the level of reserve to be determined.

We also consider the “Nadezhnost” software that has 
been developed recently. This software is intended to study 
different optimization methods to estimate the efficiency and 
identify the methods capable of solving the problems with a 
great number of variables. 

Note that the majority of programs apply the algorithm 
based on the Monte Carlo method [12].  This algorithm 
includes different mathematical models of optimal power 
flow with different statements and methods for solving the 
optimization problems [13].  The algorithm for assessment of 
power system adequacy is based on the Monte Carlo method 
and comprises three basic blocks:

1) A probability block for generation of power system 
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Abstract — Continuous changes and expansion of 
power systems lead to their complexity and aggregation. 
Therefore, the existing models and software to calculate 
the reliability of such systems can be inefficient from 
the standpoint of time, accuracy and adequacy of the 
results. To obtain objective information, we analyzed 
some existing power shortage minimization models that 
are applied to assess the adequacy of a power system. 
The paper presents the results of the model studies on 
the availability of a physically incorrect power flow 
between nodes and two-sided flows. The studies have 
proven the existence of a set of optimal solutions. The 
existing approaches considering adequate power flow 
have  been tested. To cope with the described problems 
we have proposed additional constraints on power flows, 
and a two-stage method for power flow optimization, 
which, in the end, enabled the revealed problems to be 
resolved.

Index Terms — adequacy, optimization methods, power 
shortage minimization, two-stage power flow model.
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states with components randomly put in or removed from 
operation.

2) A block for power shortage calculation intended for 
power shortage minimization in each generated system state.

3) A block for calculation of power system reliability 
indices, which  is designed to process and analyze all the stored 
information (the result of work of two previous blocks) and 
calculate such adequacy indices as the probability of failure-
free (shortage-free) operation, the mathematical expectation 
of power shortage in power systems, the mathematical 
expectation of power undersupply, etc.

The core of the considered algorithm is the second block 
responsible for the calculation of power shortage in different 
power system states. The quality of the results, which implies 
the calculation speed and accuracy, the capability to solve the 
problems with an increasing number of variables, depends on 
the applied optimization method and the model correctness. 
In the end, the minimal difficulties or delays in calculations 
increase the time spent on solving the whole problem. Thus, 
the goal is to solve the power shortage minimization problem 
as fast as possible within a short space of time. 

The research is mainly focused on an analysis of power 
shortage minimization model, which takes into consideration 
quadratic power losses, conformity of the model to real 
physical processes, application of different optimization 
approaches and methods, namely, a combination of the 
penalty function method and the gradient descent method. 

II. Problem statement

The problem of power shortage minimization is 
formulated as follows: 

Determine an optimal power flow in a power system for 
the known values of generating capacities in operation, the 
required levels of consumer loads, the transfer capabilities 
of tie lines in a power system and the factors of power 
losses in the system tie lines [12]. There exist several types 
of power shortage minimization models, and this paper 
deals with the models applied. The linear statement of the 
problem is presented below.

Mathematically, the problem is formulated as follows: 

!(�̀�𝑦% − 𝑦𝑦%) → 𝑚𝑚𝑚𝑚𝑚𝑚
,

-

%./

, (1) 

subject to the balance constraints: 

𝑥𝑥% − 𝑦𝑦% +!31 − 𝑎𝑎6%7𝑧𝑧6% −!𝑧𝑧%6

-

6./

= 0,
-

6./

 

𝑚𝑚 = 1,… , 𝑚𝑚, 𝑚𝑚 ≠ 𝑗𝑗, 

(2) 

and to the constraints on optimized variables: 
0 ≤ 𝑦𝑦% ≤ �̀�𝑦%, 𝑚𝑚 = 1,… , 𝑚𝑚, , (3) 

0 ≤ 𝑥𝑥% ≤ �̀�𝑥%, 𝑚𝑚 = 1,… , 𝑚𝑚, ,  (4) 

0 ≤ 𝑧𝑧%6 ≤ 𝑧𝑧%̀6, 𝑚𝑚 = 1,… , 𝑚𝑚, 𝑗𝑗 = 1,… , 𝑚𝑚, 𝑚𝑚 ≠ 𝑗𝑗 , (5) 
 

 
where: xi the usable capacity (MW) at node i, x ̀i is the 

available generating capacity (MW) at node i, yi is the load 
to be supplied at node i (MW), y ̀i is the load value at node i 
(MW), zij is the power flow from node i to node j (MW),  
z ̀ij is the transfer capability of the transmission line between 
nodes i and j (MW), aji is the given positive coefficients of 
specific losses of power when transmitted from node j to 
node i, j≠i, i=1,…,n, j=1,…,n.

Model (1-6) is a common model of power flow for 
the adequacy assessment, which is solved by minimizing 
power shortage and is a transportation problem. The 
presented optimization problem is solved basically 
using the simplex method and the dual simplex method 
in their different variations, for the reason of the model 
simplicity. However, in [12] the authors present a valid 
conclusion that the model, where the power losses 
depend on the squared  transmitted power, is a more 
adequate model. For this purpose, model (1-5) includes 
the modified balance equations, in which the constraints 
of type (2) are replaced with the following constraints: 

𝑥𝑥" − 𝑦𝑦" +&'1 − 𝑎𝑎*"𝑧𝑧*",𝑧𝑧*" −&𝑧𝑧"* = 0
/

*01

,
/

*01

 

𝑖𝑖 = 1,… , 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗. 

(6) 

 Thus, the stated problem can be presented in two forms 
– the problem of linear and nonlinear programming. The 
problem form strictly depends on the applied balance 
constraints in formulas (2), (6). The linear programming 
problem is solved if the balance constraints contain 
equations only with the linear losses. The nonlinear 
programming problem is solved, when the balance 
constraints contain equations with the quadratic losses. The 
latter can be solved by different methods of constrained 
and unconstrained optimization. However, this problem 
cannot be solved by the standard methods of unconstrained 
optimization because of available different equality and 
inequality constraints. For this purpose, the objective 
function and all constraints should be presented in the 
form of the common objective function. For example, 
in the YANTAR [12] software, the problem in the linear 
statement was solved by the Lagrange method and various 
modifications of the interior point method. It is worthwhile 
to note that the problem is solved for the long-term power 

Fig. 1. Schematic representation of power flow.
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system expansion planning, it uses certain equivalent 
methods and there is also uncertain information that can 
be used to solve it.

In the process of studies, we validated models (1-5) 
and (1), (3-6) using the test scheme (ТS1). ТS1 is a system 
(Fig. 1) consisting of three nodes and three tie lines with 
a ring topology. We applied a combination of the penalty 
function method and the gradient descent method (PFGD) 
as the optimization method. Based on the validation results, 
we obtained a solution where the optimized variables for 
flows z12 and z21 had positive values, which indicates a 
nonconformity of models (1-5) and (1), (3-6) to physical 
processes.

The obtained solution contained the data on the 
availability of involved flows (Table 1), whose power 
was distributed in both directions simultaneously, which 
contradicts the physical reality because each transmission 
line in each specific state can operate only in one direction. 
This fact indicates that only one variable for flows z12 or z21 
responsible for one tie line can take a nonzero value.

Table 1. Test results, model (1) – (5), (2) – (6).

This situation was eliminated by the formulation of an 
additional constraint on power flows:

  zji zij=0,i=1,…,n,j=1,…,n,i≠j ,   (7)

Thus, constraint (7) transforms the considered problem 
into a correct one from the standpoint of modeling of power 
flows between the nodes and alters models (1-5) and (1), 
(3-6) into correct ones from the standpoint of physics.

III. models of Power shortage mInImIzatIon  
In Power systems

Models (1-5), (7) and (1), (3-7) are two mathematical 
models of power shortage minimization in power systems, 
which are used for adequacy assessment. Model (1-5), (7) 
takes into account linear power losses, and model (1), (3-7) 
– quadratic power losses. However, the presented models 
have some downsides that have been eliminated for a long 
time by the modification of these models and approaches to 
solving the above problems.

The incorrect power flow is one of such downsides. 

Thus, validation of models (1-5), (7) and (1), (3-7) showed 
the incorrect power flow but the objective function value 
is determined correctly and is the absolute minimum. For 
example, instead of power transmission by the only tie line 
in one direction (Fig. 2) represented by variable z13 from 
surplus node 1 to deficient node 3, the additional node 2 and 
tie lines z12 and z23 are used for power transmission, which 
is not necessary at all. Such a flow  “through” additional 
node 2 increases power transmission losses.

We applied TS1 as a tested example, optimized model 
(1-5), (7) using PFGD, and in addition, we arranged 
testing with the aid of the commercial solver of linear 
programming problems LP Solve. The results obtained are 
presented in (Table 2).

Table 2. Test results, model (1) – (5), (7).

The study presented in [12] suggested a transformation 
of the objective function (1) into the form

!(𝑦𝑦$̀ − 𝑦𝑦')) 𝑦𝑦$̀⁄
+

',-

→ 𝑚𝑚𝑚𝑚𝑛𝑛
2
, 𝑚𝑚 ≠ 𝑗𝑗. (8) 

 
After replacement of objective function (1) by objective 

function (8) in model (1-5), (7), the obtained model (1-5), 
(7), (8) was tested on TS1. The test resulted in the values 
identical to those in Table 2. The obtained solution satisfies 
balance constraints (2) with an error of 0.003, where  
i=2 (which can be referred to an error of the computer 
calculation because of representation of numbers in the PC 
memory). Hence, the emerge excess flow is expressed by 

Fig. 2. An illustrative example of an incorrect power flow.

http://esrj.ru/


28

Dmitrii V. Iakubovskii et al. Energy Systems Research, Vol. 1, No. 3, 2018

the variable z12, which indicates an incorrect power flow 
Fig. 2. The obtained values of x1, x2, z12 do not correspond 
to the reference solution. The analysis of the considered 
example on TS1 with the constraints presented in (Table 
2)  shows that the additional generating capacity in an 
amount of 2.79 MW from node 1 is used instead of the 
generating capacity in an amount of 108 MW  of node 2  to 
transmit the power in an amount of 10 MW to node 3. This 
additional power was transmitted to node 3 through node 2. 
However, the value of z12 equals 2.94 MW because of the 
inclusion of additional power transmission losses. 

Thus, a set of the obtained parameters (Table 1) satisfies 
the stated conditions and constraints, in particular, the 
determined value of the objective function minimum, but 
is not an optimal solution in terms of power flow. Hence, 
the model aimed at the correct power flow cannot eliminate 
the cases of incorrect power flow. 

Model (3-8) with nonlinear balance constraints was 
tested as an experiment, and the obtained results (Table 3) 
were close to the previous ones (Table 2). The results of 
additional testing via the commercial solver GAMS (the 
CONOPT module for solving the nonlinear programming 
problems) are also presented in Table 3.

Table 3. Test results, model (3-8).
   PFGD GAMS 
�̀�𝑥# 158 𝑥𝑥# 103,27 101 
�̀�𝑥$ 109 𝑥𝑥$ 105,98 108 
�̀�𝑥% 83 𝑥𝑥% 83 83 
�̀�𝑦# 91 𝑦𝑦# 91 91 
�̀�𝑦$ 98 𝑦𝑦$ 98 98 
�̀�𝑦% 201 𝑦𝑦% 93 93 
𝑧𝑧#̀$ 10 𝑧𝑧#$ 2,27 0 
𝑧𝑧$̀# 10 𝑧𝑧$# 0 0 
𝑧𝑧#̀% 10 𝑧𝑧#% 10 10 
𝑧𝑧%̀# 10 𝑧𝑧%# 0 0 
𝑧𝑧$̀% 10 𝑧𝑧$% 10 10 
𝑧𝑧%̀$ 10 𝑧𝑧%$ 0 0 

  𝑎𝑎 0,05 0,05 
 

As is seen from Table 3, the results satisfy the balance 
constraints with an error of -0.007645 when solving 
(6), where i=2 (which can be referred to the error of the 
computer calculation because of representation of numbers 
in the PC memory), and the excess flow expressed by the 
variable  z12 is available (Fig. 2).

In [14] there is a statement that the quadratic component 
in the balance equality constraints (6) stipulates the 
nonconvexity of a set of feasible solutions. However, based 
on the data obtained in two experiments we can suppose 
that on the whole, the model with quadratic losses has a set 
of optimal solutions. This fact, in turn, influences the power 
flow, thereby the objective function minimum is determined 
correctly. In order to confirm the availability of a set of 
feasible solutions, we made additional calculations on TS1 
with different starting points specified for the gradient 
descent method. The results are presented below in Table 
4, where the number in the heading is the serial number 
of the experiment, the first column of each experiment 

describes the values of the starting point parameter, the 
second column presents the obtained solutions.

Table 4. Test results of the multi-start PFGD use.
𝑎𝑎 = 0.00009 1 2 3 
�̀�𝑥( 158 𝑥𝑥( 50 103,3 100 102,9 101 104,1 
�̀�𝑥) 109 𝑥𝑥) 50 105,7 100 106,1 108 104,9 
�̀�𝑥* 83 𝑥𝑥* 50 83 100 83 83 83 
�̀�𝑦( 91 𝑦𝑦( 50 91 100 91 91 91 
�̀�𝑦) 98 𝑦𝑦) 50 98 100 98 98 98 
�̀�𝑦* 201 𝑦𝑦* 50 103 100 103 102,9 103 
𝑧𝑧(̀) 10 𝑧𝑧() 50 2,3 100 1,8 10 3,1 
𝑧𝑧)̀( 10 𝑧𝑧)( 50 0 100 0 0 0 
𝑧𝑧(̀* 10 𝑧𝑧(* 50 10 100 10 10 10 
𝑧𝑧*̀( 10 𝑧𝑧*( 50 0 100 0 0 0 
𝑧𝑧)̀* 10 𝑧𝑧)* 50 10 100 10 0 10 
𝑧𝑧*̀) 10 𝑧𝑧*) 50 0 100 0 0 0 
 

Table 4 illustrates significant variations in the 
generating capacity values x1 and x2, and also a changing 
resultant value of the flow z12. Therewith, the values of the 
supplied load y1,y2,y3 do not vary, which indicates that the 
function minimum was determined correctly. Thus, the 
results show the existence of a set of feasible solutions. 
The authors of [14] proposed some modifications to solve 
this problem, in particular, with the quadratic constraints. 
The modifications concerned both the model and the 
calculation scheme. To start with, the authors made an 
attempt to eliminate a nonconvex set of feasible solutions 
by transforming balance constraints (2), (6) from the 
equality constraints to the inequality constraints. These 
constraints specified fully supplied load at the node and 
also assumed the maximum possible power transmission, 
which had to resolve the problem of incorrect power flow.

𝑥𝑥" − 𝑦𝑦" +&'1 − 𝑎𝑎*"𝑧𝑧*",𝑧𝑧*" −&𝑧𝑧"* ≥ 0,
0

*12

0

*12

 

𝑖𝑖 = 1,… , 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗. 

(9) 

 
The application of the considered constraints on TS1 

showed that the incorrect power flow remained, but the 
flow value z12 decreased, at the same time the generating 
capacity values x1, x2, x3 changed and became equal to  
x ̀1,

 x ̀2,
 x ̀3,

respectively. However, the availability of generating 

   PFGD GAMS 
�̀�𝑥# 158 𝑥𝑥# 158 101 
�̀�𝑥$ 109 𝑥𝑥$ 109 108 
�̀�𝑥% 83 𝑥𝑥% 83 83 
�̀�𝑦# 91 𝑦𝑦# 91 91 
�̀�𝑦$ 98 𝑦𝑦$ 98 98 
�̀�𝑦% 201 𝑦𝑦% 93 93 
𝑧𝑧#̀$ 10 𝑧𝑧#$ 0,22 0 
𝑧𝑧$̀# 10 𝑧𝑧$# 0 0 
𝑧𝑧#̀% 10 𝑧𝑧#% 10 10 
𝑧𝑧%̀# 10 𝑧𝑧%# 0 0 
𝑧𝑧$̀% 10 𝑧𝑧$% 10 10 
𝑧𝑧%̀$ 10 𝑧𝑧%$ 0 0 

  𝑎𝑎 0.05 0.05 

 

Table 5. Test results, model (1), (3-5), (7), (9).

http://esrj.ru/


29

Dmitrii V. Iakubovskii et al. Energy Systems Research, Vol. 1, No. 3, 2018

capacity in the volume exceeding the volume needed to 
serve the load is physically unnatural, because this surplus 
capacity is blocked. For example, Table 5 displays the results 
obtained on ТS1 using PFGD for model (1), (3-5), (9).

The authors of [14] proposed a theoretical approach to 
obtaining the optimal values of a solved problem with the 
correct power flow. The idea of the approach was to solve 
the problem by a two-stage optimization. The first stage 
suggests applying model (1), (3-5), (7), (8), obtaining an 
intermediate solution, and then introducing a new variable

∆" #, 𝑖𝑖 = 1,… , 𝑛𝑛 

∆"#	= 𝑥𝑥'# − 𝑦𝑦'# ++,1 − 𝑎𝑎/#�̃�𝑧/#2�̃�𝑧/# −
3

/45

+�̃�𝑧#/

3

/45

, 

	𝑖𝑖 = 1,… , 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗, 

(10) 

+∆# →min
∆

3

#45

, (11) 

𝑥𝑥# ++,1 − 𝑎𝑎/#𝑧𝑧/#2𝑧𝑧/# −
3

/45

+𝑧𝑧#/ − ∆#=	
3

/45

𝑦𝑦@A, 

	𝑖𝑖 = 1,… , 𝑛𝑛, 𝑖𝑖 ≠ 𝑗𝑗, 

(12) 

 where ∆"#, 𝑥𝑥&#, 𝑦𝑦&#, �̃�𝑧*#   is the optimal solution obtained in 
the first stage (10).  In the second stage, the values of 
ỹi were fixed and a new objective function of form (11) 
and balance constraints of type (12) were introduced, 
subsequently the problem was solved for the variables 
∆i,xi,zji,  and the model took form (3-5), (7), (9), (11), (12),   
j≠i, i=1,…,n, j=1,…,n.

The proposed modifications were validated on TS1 
using PFGD. The values of the variables obtained in the 
first stage of the problem-solving process are presented in 
(Table 5). However, in the second optimization stage, the 
results did not change, which indicated that the results of 
this model were incorrect.  

We propose the following algorithms to deal with 
incorrect power flow. The two-stage optimization must be 
applied in a different way: the power shortage minimization 
problem for model (1), (3-5), (7), (9) must be solved in 
the first stage. Such an approach will provide a convex set 
of feasible solutions. Then, the obtained optimal solutions 
for the variable yi must be fixed and a new variable must 
be denoted as ỳi. Subsequently, in the second stage, it is 
necessary to generate a new objective function, which is 
the minimization of the second Euclidean norm for all  the 
flows:

!𝑧𝑧#$% → 𝑚𝑚𝑚𝑚𝑚𝑚
*
, 𝑚𝑚 ≠ 𝑗𝑗

.

$/0

, (13) 

 and also to transform  the current balance constraints (10) 
into the balance constraints presented below:

𝑥𝑥" − 𝑦𝑦%& +()1 − 𝑎𝑎,"𝑧𝑧,".𝑧𝑧," −
/

,01

(𝑧𝑧", = 0
/

,01

,	 

𝑖𝑖 = 1,… , 𝑛𝑛	. 

(14) 

 
The performance of the approach of the sequential two-

stage optimization and the interaction of models (1), (3-
5), (7), (9) and (4-5), (7), (13), (14) was validated on TS1 
using PFGD. The results of the first stage are presented in 
Table 5, the parameters obtained in the test of the second 
stage are indicated in Table 6.

Table 6. Test results, model (4-5), (7), (13), (14).

   PFGD GAMS    PFGD GAMS 

�̀�𝑥# 158 𝑥𝑥# 99,5 101 �̀�𝑥# 158 𝑥𝑥# 100,98 101 
�̀�𝑥$ 109 𝑥𝑥$ 106,5 108 �̀�𝑥$ 109 𝑥𝑥$ 107,98 108 
�̀�𝑥% 83 𝑥𝑥% 83,11 83 �̀�𝑥% 83 𝑥𝑥% 83 83 
�̀�𝑦# 91 𝑦𝑦# 91 91 �̀�𝑦# 91 𝑦𝑦# 91 91 
�̀�𝑦$ 98 𝑦𝑦$ 98 98 �̀�𝑦$ 98 𝑦𝑦$ 98 98 
�̀�𝑦% 93 𝑦𝑦% 93 93 �̀�𝑦% 103 𝑦𝑦% 102,98 103 
𝑧𝑧#̀$ 10 𝑧𝑧#$ 0 0 𝑧𝑧#̀$ 10 𝑧𝑧#$ 0 0 
𝑧𝑧$̀# 10 𝑧𝑧$# 0 0 𝑧𝑧$̀# 10 𝑧𝑧$# 0 0 
𝑧𝑧#̀% 10 𝑧𝑧#% 8,49 10 𝑧𝑧#̀% 10 𝑧𝑧#% 9,98 10 
𝑧𝑧%̀# 10 𝑧𝑧%# 0 0 𝑧𝑧%̀# 10 𝑧𝑧%# 0 0 
𝑧𝑧$̀% 10 𝑧𝑧$% 8,49 10 𝑧𝑧$̀% 10 𝑧𝑧$% 9,98 10 
𝑧𝑧%̀$ 10 𝑧𝑧%$ 0 0 𝑧𝑧%̀$ 10 𝑧𝑧%$ 0 0 

  𝑎𝑎 0,05 0,05   𝑎𝑎 0,00009 0,00009 

 

Table 7. Test results, model (4-5), (7), (14), (15), PFGD.
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The results in Table 6 show that the parameters 
obtained with this combination of models are adequate 
and close to the target values of the commercial solver 
GAMS. The more exact and closer results were obtained 
by modification of the objective function of model (13) of 
the second stage that is given below:

!𝑥𝑥# → 𝑚𝑚𝑚𝑚𝑚𝑚
(

)

#*+

. (15) 

 The objective function (16) is intended for minimization 
of generating capacity, which can yield a positive economic 
effect in power generation and distribution. Model (4-5), 
(7), (14), (15) with this objective function for the second 
optimization stage was validated on ТS1 and showed 
closer and more valid results than model (4-5), (7), (13), 
(14). The calculation results are illustrated in Table 6, the 
values of the constraints are presented in the upper part and 
the results are given in the lower part.

IV. methods for Power shortage mInImIzatIon  
In Power systems

The penalty function method [15] can be applied to 
optimization problems with different types of constraints. 
This method makes it possible to transform the initial 
problem with constraints into the problem that can be 
solved by the unconstrained optimization methods. Such 
a transformation allows the use of simpler methods for 
solving the linear and nonlinear programming problems 
and the increase in calculation accuracy with the correct 
selection of parameters. The main changes occur in the 
objective function, to which the constraints in the form of 
penalty functions are added. Thus, changes in the system 
can lead to automatic involvement of the penalty function, 
whose value will sharply rise. In this case, the response to 
the penalty will be controlled by the optimization method, 
and finally, the function will be directed to a sought 
solution. There are two subtypes of the penalty function 
method – internal and external penalty functions.

Further, we will consider the external penalty function 
method, since this method allows solving the constrained 
optimization problems with both equality and inequality 
constraints. In the general form, the function and constraints 
look as follows:

𝑓𝑓(𝑥𝑥) → 𝑚𝑚𝑚𝑚𝑚𝑚, (16) 
 subject to equality and inequality constraints:

𝜑𝜑"(𝑥𝑥) = 0, 𝑖𝑖 = 1,… , 𝐼𝐼, (17) 

𝑔𝑔.(𝑥𝑥) ≤ 0, 𝑗𝑗 = 1,… , 𝐽𝐽, (18) 

 The strategy of a search for the optimal solutions 
suggests that in this method the penalty functions Φ(x,γ) 
are chosen so that their values are equal to zero inside and 
on the boundary of the feasible region G, while beyond the 
region they are positive and increase the more, the higher  

the violations of the constraints. Thus, here the distance 
from the feasible region G is “penalized“.
As a rule, the function:

𝛷𝛷(𝑥𝑥, 𝛾𝛾) =
𝛾𝛾
2 (19) 

 
where:

𝑚𝑚𝑚𝑚𝑚𝑚 $0, 𝑔𝑔((𝑚𝑚)+ = -
0, 𝑔𝑔(𝑚𝑚) ≤ 0

𝑔𝑔((𝑚𝑚), 𝑔𝑔((𝑚𝑚) > 0  (20) 

 is applied as an external penalty function.
The auxiliary function F(x,γ), in this case, takes the 

form:
𝐹𝐹(𝑥𝑥, 𝛾𝛾) = 𝑓𝑓(𝑥𝑥) + Ф(𝑥𝑥, 𝛾𝛾) . (21) 

 
The starting point for search is usually specified 

beyond the feasible region G. The point x* (γk) of the 
unconstrained minimum of the auxiliary function F(x*,γk) 
for x with the specified parameter γk is searched with 
the help of any method of constrained optimization (of 
the zero, first or second order) at each k-th iteration.  
The obtained point x* (γk)  is used as a starting one at the 
next iteration with the increasing value of the penalty 
parameter. With the unlimited growth of γk the sequence x* 
(γk) converges to the constrained minimum point x*.

V. aPPlIcatIon of the Penalty functIon method to 
Power shortage mInImIzatIon Problem

We apply the described method to transform the 
stated constrained optimization problem with the balance 
constraints subject to the quadratic losses. Then, we 
generate an auxiliary function by integrating the constraints 
in a required format into the external penalty function for 
model (1), (3-6), (8), (10), which will look as follows:

𝛷𝛷(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑎𝑎, �̀�𝑥, �̀�𝑦, 𝑧𝑧̀, 𝛾𝛾) =
𝛾𝛾
2 (22) 

 
The value of the penalty multiplier is controlled by 

the parameter γ.  In this problem, the penalty is gradually 
increased by an order of magnitude per iteration, the initial 
value of this parameter is equal to 10. The remaining penalty 
function parameters are correlated in accordance with the 

Fig. 3. Graph of the strategy of search (with γ2>γ1).
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available constraints, where the equality constraints are the 
penalty function parameters: 

𝜑𝜑"(𝑧𝑧) = 𝑧𝑧'( ∗ 𝑧𝑧(', 
𝑖𝑖 = 1,… , 𝐼𝐼, 𝑗𝑗 = 1,… , 𝑛𝑛, 𝑘𝑘 ≠ 𝑗𝑗 (23) 

 The inequality constraints are:

𝑚𝑚𝑚𝑚𝑚𝑚 $0, 𝑡𝑡()𝑚𝑚, 𝑦𝑦, 𝑧𝑧,𝑚𝑚,-

= /
0, 𝑡𝑡((𝑚𝑚, 𝑦𝑦, 𝑧𝑧, 𝑚𝑚) ≤ 0

𝑡𝑡((𝑚𝑚, 𝑦𝑦, 𝑧𝑧, 𝑚𝑚), 𝑡𝑡((𝑚𝑚, 𝑦𝑦, 𝑧𝑧, 𝑚𝑚) > 0,

𝑗𝑗 = 1,… , 𝑛𝑛, 

(24)

𝑡𝑡"(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑎𝑎) = 

𝑥𝑥+ − 𝑦𝑦+ +.(1 − 𝑎𝑎0+𝑧𝑧0+)𝑧𝑧0+ −
1

023

.𝑧𝑧+0

1

023

 

𝑗𝑗 = 1,… , 𝑛𝑛, 𝑘𝑘 = 1,… , 𝑛𝑛, 𝑖𝑖 = 1,… , 𝑛𝑛, 𝑘𝑘 ≠ 𝑖𝑖	, 

(25)

𝑚𝑚𝑚𝑚𝑚𝑚 $0, 𝑔𝑔((𝑚𝑚)+ = -
0, 𝑔𝑔(𝑚𝑚) ≤ 0

𝑔𝑔((𝑚𝑚), 𝑔𝑔((𝑚𝑚) > 0,

 𝑗𝑗 = 1,… , 𝑛𝑛, 
(26)

𝑚𝑚𝑚𝑚𝑚𝑚 $�̀�𝑚, 𝑔𝑔((𝑚𝑚)+ = -
�̀�𝑚, 𝑔𝑔(𝑚𝑚) ≥ �̀�𝑚

𝑔𝑔((𝑚𝑚), 𝑔𝑔((𝑚𝑚) < �̀�𝑚 ,

𝑗𝑗 = 1,… , 𝑛𝑛, 
(27)

𝑚𝑚𝑚𝑚𝑚𝑚 $0, 𝑔𝑔((𝑦𝑦), = .
0, 𝑔𝑔(𝑦𝑦) ≤ 0

𝑔𝑔((𝑦𝑦), 𝑔𝑔((𝑦𝑦) > 0 ,

𝑗𝑗 = 1,… , 𝑛𝑛, 
(28)

𝑚𝑚𝑚𝑚𝑚𝑚 $�̀�𝑦, 𝑔𝑔)(𝑦𝑦), = .
�̀�𝑦, 𝑔𝑔(𝑦𝑦) ≥ �̀�𝑦

𝑔𝑔)(𝑦𝑦), 𝑔𝑔)(𝑦𝑦) < �̀�𝑦 ,

𝑗𝑗 = 1,… , 𝑛𝑛, 
(29)

𝑚𝑚𝑚𝑚𝑚𝑚 $0, 𝑔𝑔((𝑧𝑧+,). = 0
0, 𝑔𝑔(𝑧𝑧+,) ≤ 0

𝑔𝑔((𝑧𝑧+,), 𝑔𝑔((𝑧𝑧+,) > 0,

𝑗𝑗 = 1, . . . , 𝑛𝑛, 𝑘𝑘 = 1,… , 𝑛𝑛, 𝑖𝑖 = 1,… , 𝑛𝑛, 𝑘𝑘 ≠ 𝑖𝑖 
(30)

𝑚𝑚𝑚𝑚𝑚𝑚 $𝑧𝑧'̀(, 𝑔𝑔+(𝑧𝑧'(). = 0
𝑧𝑧'̀(, 𝑔𝑔(𝑧𝑧'() ≥ 𝑧𝑧'̀(

𝑔𝑔+(𝑧𝑧'(), 𝑔𝑔+(𝑧𝑧'() < 𝑧𝑧'̀(
, 

𝑗𝑗 = 1, . . . , 𝑛𝑛, 𝑘𝑘 = 1,… , 𝑛𝑛, 𝑖𝑖 = 1,… , 𝑛𝑛, 𝑘𝑘 ≠ 𝑖𝑖. 
(31) 

 
Further, we replace the objective function f(x), and 

also penalty functions (23) and (26) in accordance with the 
replaced balance constraints by (15), however, (24), (27) 
– (32) are not subject to changes. In the end, the penalty 
functions must be of the following form:

𝛷𝛷(𝑥𝑥, y&, 𝑧𝑧, �̀�𝑥, �̀�𝑦, 𝑧𝑧,̀ 𝛾𝛾) =
𝛾𝛾
2 (32) 

 where:
𝜑𝜑"#𝑥𝑥, 𝑦𝑦', 𝑧𝑧)",𝑎𝑎)"+ = 𝑥𝑥" − 𝑦𝑦'"

+/#1 − 𝑎𝑎)"+𝑧𝑧)"

1

)23

−/𝑧𝑧")

1

)23

, 𝑖𝑖 = 1,… , 𝑛𝑛. 

(33) 

 

VI. conclusIon

The assessment of power system adequacy is topical 
and necessary for power system expansion planning. The 
power shortage minimization problem is solved within the 
system adequacy assessment by the Monte Carlo method. 
The paper presents an analysis of the existing power 
shortage minimization models. The study revealed some 
downsides of the models. A case study demonstrates that 
the models have a nonconvex set of feasible solutions. 
The paper describes a technique for transformation of 
balance constraints for modeling of the problem with a 
set of feasible solutions. Consideration is also given to 
different modifications of the power shortage minimization 
models. Based on the studies performed we propose two 
modifications of the models. 

The stated problems were solved by the gradient descent 
method. The commercial solvers GAMS (CONOPT) and 
LP Solve were applied to obtain reference solutions.
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