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Abstract  —  In the recent decades, as a result of the increase 
in demand for electricity, it has been getting increasingly 
more frequent that the spinning reserve rate of the 
generators in Taiwan reaches lower level which reflects 
the emergency of power supply. The paper employs 
neural network (NN) to forecast the clearing price of the 
bidding through spinning reserve ratio and temperature 
data. Subsequently, the load-reduction of customers is 
forecasted through NN and fuzzy logic system. Fuzzy 
system is adopted for forecasting of low voltage LV 
customer to simulate the uncertainties of load reduction 
considering different situations during demand response 
(DR). In order to improve the forecasting accuracy when 
realistic data of DR is available, another procedure 
of correcting the customers’ model for forecasting is 
proposed. Afterwards, the feasible contract capacity 
of load-reduction signed with Taiwan Power Company 
(TPC) is determined through an optimization algorithm. 
To actually assess the benefit, the real load data from 
Taiwan and Texas are used in the simulation.

Index Terms — Demand response, demand-bidding, 
load-reduction forecasting.

I. Introduction

In recent decades, the government has been promoting 
energy policies related to electric power, reflecting that the 
increase in demand for electricity has been an inevitable 
issue. In addition, along with the progress in living 
standards, the electricity demand grows up, which severely 
impacts the stability of electricity supply. The percent 
reserve margin of generators in Taiwan decreases year by 
year, which is also a symbol of the emergency of the power 

system. For the purpose of solving the crisis of energy 
shortage, initiative like promoting renewable energy 
resources such as photovoltaic power and wind power has 
arisen [1], and besides, smart grid [2] also emerges as a 
new paradigm in power grid. Combined with advanced 
communication technologies and control methodologies 
[3]-[5], smart grid has gradually become the mainstream 
trend of future electric industry owing to its ability of 
adjusting power generation, transmission, and distribution 
[6]. 

Among the features of smart grid, demand side 
management (DSM) is the modification of customer 
demand for energy through various methods such as 
adopting time of use tariff or even giving financial 
incentives [7]. Furthermore, there is another technique 
named automated demand response (ADR) cooperating 
with energy management system (EMS) which can 
automatically manipulate the appliances in houses or 
buildings through the advanced infrastructures installed for 
communication and control [8]. To sum up, both DSM and 
ADR are considerable approaches for peak shaving thus 
reducing the operating expense from expensive generators, 
and further deferring the capacity addition in the long run 
[9].

Subsequently, in order to encourage the involvement of 
more customers in the demand response (DR), a program 
called demand bidding is implemented in Taiwan. For 
the power utility, the main purpose of the program is to 
collaborate with the customers on DR, namely, each 
electricity customer can determine the available time of 
executing DR and bid the corresponding price, then the 
utility will judge whether the customer wins the bid or 
not. Similarly, the potential of participating in the demand-
bidding program is worthy of assessment for the electricity 
customers.

As mentioned previously, the researches presented 
in [4], [5], [10]-[12] describe methods that improve the 
electricity consumption pattern for the industrial customer 
by means of adopting time-of-use (TOU) tariff. This way, 
the end-customers benefit from the kind of load management 
such as saving the electricity bills, and thereby the grid 

___________________________________________________

* Corresponding author.
E-mail: z10408115@email.ncku.edu.tw

http://dx.doi.org/10.25729/esr.2018.03.0009
Received August 21, 2018. Revised November 26, 2018.  
Accepted December 19, 2018. Available online January 25, 2019.

© 2018 ESI SB RAS and authors. All rights reserved.

http://esrj.ru/
http://dx.doi.org/10.25729/esr.2018.03.0009


Energy Systems Research, Vol. 1, No. 3, 2018H.T. Yang et al.

69

obtains a smoother load curve. Additionally, applications 
of energy management for the residential customers have 
been considered [13]-[15].

Home energy management methods proposed in [6] 
and [16] focus on DSM. Instead of using traditional DSM 
strategy, [6] presents a strategy based on load shifting 
technique for a large number of devices of several types. In 
[16], the authors demonstrate load shifting applied to seven 
different customer load sectors and illustrate the effects 
of the various DSM measures on the load shapes and on 
the system reliability indices used in generating capacity 
adequacy assessment.

In addition to DSM, DR is a further mechanism for 
reshaping the load profile [17], [18]. In a narrow sense, 
the DR here refers to the direct control of end-customers’ 
loads at times of high wholesale market prices or when 
system reliability is jeopardized, then the incentive is paid 
to the customers for their cooperation. Moreover, home 
energy management system (HEMS) plays an important 
role that enables the residential customers to execute DR 
programs and load scheduling autonomously in the smart 
grid [9]. In [19], up to 20% reduction in daily electricity 
cost is achieved through its proposed HEMS management 
algorithm according to TOU.

Thereafter, the concept named virtual power plant (VPP) 
emerges as a combination of various small size distributed 
generating units which form a “single virtual generating 
unit” that can act as a conventional one and capable of 
being visible or manageable on an individual basis [20]. 
Furthermore, reference [21] takes DR into consideration 
by proposing a novel scheme of DR implementation, 
which is done based on the customers’ submissions of 
candidate load profiles ranked in the preference order. The 
result of costs minimization for DR participants is verified 
as well, nevertheless, the uncertainties of the customers 
are not considered according to the presented scheme. 
Research like [22] discusses the bidding problem of DR 
in the day-ahead and real-time markets, yet the recent 
demand-bidding structure in Taiwan is different from other 
countries like the USA.

However, it is valuable to assess the profitable potential 
of participating in the demand-bidding program. As a 
result, owing to the lack of literature discussing the demand 
bidding problem in Taiwan, this paper attempts to propose 
a procedure evaluating the overall effect for an aggregator 
who takes part in the program.

II. Problem description and system modeling

A. Overall System Structure
In order to assess the potential of being an aggregator 

which contains lots of electricity customers for 
participating in the demand bidding program in Taiwan, 
this paper attempts to propose a method which helps the 
aggregator develop the optimal strategy that maximizes 
the electricity incentive received from the power utility for 

the bidding problem. Although LV customers cannot take 
part in DR in this stage, however, in this study, a future 
situation is mainly assumed that a HV customer serves as 
the aggregator who is able to cooperate with several LV 
customers on providing service like DR to the utility.

Fig. 1 illustrates the overall structure. In this structure, 
the smart meters, or advanced metering infrastructure 

(AMI) known as the further form, are installed in each 
customer’s house or building. By means of the smart 
meters, the electricity consumption can be monitored and 
be recorded along with time. The remote metering and 
the signal reception of electricity tariff or even DR can be 
implemented through the AMI as well. In the other words, it 
provides bidirectional communication between electricity 
customers and the power utility. In addition to AMI, another 
device called home energy management system (HEMS) 
which mainly comprises a gateway, controller for the 
appliances, and communication equipment, is necessary 
for a home to operate automated demand response (ADR) 
that involves automatic load shedding through program 
during DR events. 

In the discussed structure, power consumption of 
equipment such as chiller can be adjusted by the energy 
management system for the HV customer during DR 
events. For the residential customer, air-conditioner and 
electric furnace are automatically controlled through 
HEMS during DR events. In addition, another function 
such as rescheduling the loads like clothes washer and 
clothes dryer is possible for the residential customers as 
well.

Finally, once the demand response is finished 
successfully, each customer and the aggregator are able 
to receive the corresponding incentive. In the proposed 
structure, it is reasonable for the aggregator to take 
commissions from the LV customers who take part in 
the DR program through the aggregator or even share the 
HEMS costs with the aggregator. To sum up, the aggregator 
can profit not only from the incentives of DR but also from 
the commissions taken from LV customers. On the other 
hand, the LV customers’ profits consist of incentives of DR 
and the cost savings through load scheduling. 

B. Demand bidding of Taiwan Power Company
It is undeniable that the spinning reserve rate, which 

Fig. 1 Overall structure of the proposed Aggregator.
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Determine the contract capacity of load-reduction for 
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End

represents the situation of electricity supply, has been 
lower and lower since 2012, especially on May 31, 2016, 
which has the lowest spinning reserve rate ever, about 
1.64%. In order to improve the situation, a considerable 
way is to reduce the emergency of electricity supply from 
demand side, that is, to strengthen the DSM, and DR is one 
of the widely known terms. Furthermore, DR is completed 
by directly reducing the demand of the power customers 
during the peak period, and corresponding reward would 
be paid to the cooperative customers, thus for the utility, 
it is an issue to strike a balance between the cost of power 
generation and the payment for DR. As a result, the 
demand-bidding mechanism is utilized in Taiwan, which 
allows a lot of customers to decide their acceptable time 
to reduce their power consumption and bid a price for 
the reduction capacity to Taiwan Power Company (TPC), 
then TPC would determine which customers win the bid 
according to their concern of cost or others. 

The business model of DR is a bidding process in 
Taiwan [23], [24], including the economical type, reliable 
type, and aggregated type. The general rule to evaluate a 
DR event is as follows:

1.	 Customer can decide the month of DR execution 
and the monthly minimum contract capacity of load-
reduction.

2.	 Customer can decide the DR execution duration, which 
can last either 2 hours or 4 hours each day, and it cannot 
exceed 36 hours in total for the same month.

3.	 The bidding price per kWh cannot exceed 10 NT$/
kWh.

4.	 The customer baseline load (CBL) is determined by the 
average value of the same period of DR execution time 
in previous five days except for load-reduction day, off-
peak day, and weekends.

5.	 The actual reduction amount is determined by the 
difference between CBL and the maximum demand 
during the DR execution time. The amount is treated 
as 0 if it is less than the minimum contract capacity of 
load reduction.
More specifically, Fig. 2 presents an explanation.

III. Problem formulation and the proposed 
bidding strategy optimization

In the proposed procedure, the forecasting of possible 
winning price for the demand-bidding program is firstly 
addressed, the load reduction for each role is then estimated 
through the designed models, and the last part deals with 
the bidding decision determining the capacity of load 
reduction. The entire flowchart is shown in Fig. 3.

A. Forecasting Models
The forecasting process in the proposed structure is 

executed for the demand-biddings of the forthcoming 
month, i.e. a month-ahead forecasting is designed, and 
besides, the decisions for the month are determined after 

each complete execution of the forecasting process. 
Additionally, the required inputs for the overall forecasting 
are mainly the spinning reserve rate and temperature data, 
which are predicted monthly and available from the official 
website of TPC and Central Weather Bureau (CWB) in 
Taiwan, and each residential customer’s will for load 
reduction during DR.

1) Forecasting of Clearing Price for Demand-Bidding
In order to decide the bidding price, which is most 

probably winning for each DR event, a simple forecasting 
model of feed-forward artificial neural network (FNN) is 
proposed. The employed FNN uses the back-propagation 
algorithm to reach a better forecasting outcome [25].

For the mentioned neural network, its data inputs are 
designed as the forecasted temperature and the forecasted 
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spinning reserve rate, which are available from the websites 
of CWB and TPC respectively, in the end, the data output 
of the neural network is the forecasting bidding price for 
the aggregator. The structure of the FNN used for the 
bidding price forecasting is shown in Fig. 4.

On the other hand, when it comes to the FNN training 
procedure, the historical data of the temperature and the 
spinning reserve rate corresponding to the past DR events 
are chosen as the training data. In spite of the fact that the 
historical data are similarly possible to be obtained from 
the websites of CWB and TPC, the historical data of the 
clearing prices for DR is another difficulty for the training 
procedure. In this case, the training output is replaced by 
the marginal cost of generation, which is estimated by the 
situation of generation for different generation units, since 
the marginal cost of generation is positively relevant to the 
clearing price.

2) Forecasting of Load Reduction for the High-Voltage 
Customers

For the aggregator who is going to participate in 
the demand-bidding mechanism, the estimation of the 
load-reduction amount for the forthcoming event is 
another important issue. Additionally, since the pattern 
of consuming electricity for HV customers, such as the 
industrial customers, is much more regular than the LV 
or residential customers, the load-reduction amount of the 
HV customer is forecasted by applying FNN, too.

Being similar to the forecasting of bidding price, the 
FNN is employed for the forecasting of the load reduction 
for the HV customer as well. The bidding price and the 
temperature, which are the two factors that influence the 
load reduction most likely, are adopted as the data inputs 
for this forecasting model, and the load-reduction amount 
is predicted. Fig. 5 depicts the forecasting model of the 
load-reduction estimation for the HV customer in the 
paper. Note that the input of bidding price is the clearing 
price produced from the previous forecasting FNN in the 
practical application. Besides, the training procedure can 
be accomplished by using historical data of temperature, 
the clearing price of the past demand-bidding events and 
the customer’s load profile at the corresponding time.

3) Forecasting of Load Reduction for the Low-Voltage 
Customers

Being distinct from the HV customer, the pattern of 

power consumption for LV customers, which are residential 
customers here, is hardly to be predicted because each 
customer may have different habits or preferences for 
electricity consumption. For the sake of forecasting the 
load reduction for the LV customers considering the 
mentioned uncertainties, a fuzzy logic system is used here.

Three factors are selected as the inputs of the fuzzy 
logic system, the actual bidding price of the aggregator, 
customer’s preference for the execution time of DR, and 
customer’s preference for incentive, the output of fuzzy 
logic is the estimated percentage of load reduction for the 
appliances. 

Regarding each factor, the bidding price decided by the 
aggregator impacts the final incentive for each customer, 
and the preference settings reflect the situation whether the 
load reduction is available or acceptable during the DR for 
each customer. The bidding price is normalized to represent 
its level, thus the three input factors’ values of the fuzzy 

Fig. 4. Structure of the FNN for clearing price forecasting. Fig. 5. Structure of the FNN for the forecasting of HV customer.

Fig. 6. Flowchart of proposed bidding strategy selection method.
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•	 IECm,d is the incentive of energy charge for the day d 
in the month m (NTD).

•	 Penm,d is the penalty for the day d in month m (NTD).
•	 Pcontr,m is the contract capacity of load reduction for 

the month m (kW).
•	 PIDC is the incentive price for the demand charge, 

which equals 60 NTD/kW.
•	 PIDC,as is the incentive price for the demand 

charge particularly when all the DRs are executed 
successfully in the month m, which equals 72 (NTD/
kW).

•	 Pbid,m,d is the forecasting clearing price for the day d 
in the month m.

•	 PFLR,m,d is the total forecasting load-reduction capacity 
for the day d in the month m.

•	 bs,m,d is the binary number of execution result, 
i.e. whether the DR on the day d in the month m 
succeeded or not.

•	 bas,m,d is the binary number of monthly execution 
result, i.e. whether the DRs in the month m all 
succeeded or not.

 (7) 

(8) 

100 ,,bid £< dmP

kW 50,contr ³mp

The inequality constraints are listed in (7) and (8). 
Inequality (7) represents the allowable price of demand 
bidding. Inequality (8) describes the monthly minimal load 
reduction that should be signed with TPC, then there would 
be a penalty if there is any DR event with load reduction 
below pcontr,m.

2)	 Aggregated Demand Bidding
According to the rule of the aggregated DR, the overall 

objective function is presented in (9). Equation (10), (11) 
state the variables composing (9)

max (9) 
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Where
•	 IECm,d is the incentive of energy charge for the day d in 

the month m (NTD).
•	 Pbid,m,d is the forecasting clearing price for the day d in 

the month m.
•	 pFLR,m,d is the total forecasting load-reduction capacity 

for the day d in the month m.
•	 ber,m,d is the binary number of DR execution rate, i.e. 

the ratio of reduction capacity to the contract load-
reduction capacity.

system are all ranged from 0 to 1. For each of the three 
factors, a higher value would lead to a larger percentage of 
load reduction, which also means the customer is willing 
to reduce their electricity consumption under the situation. 

Last but not least, the uncertainty of the power usage 
in the residential customers is an inevitable issue when 
forecasting the load-reduction amount. Therefore, for 
every residential customer, the uncertain characteristic is 
simulated by using random numbers that are generated 
according to the normal distribution as the inputs of the 
preference setting for the fuzzy logic system.

Moreover, considering the practicality, the preferences 
of every residential customer can be known through 
questionnaire surveys, then it would be possible to build 
up the normal distribution curve for each customer.

B. Formulation of Bidding Strategy Optimization
In the paper, the main purpose is to simulate an 

aggregator that takes part in the demand-bidding 
mechanism, maximizing the profit and finally evaluating 
the entire benefit for the discussed structure. As a result, 
in addition to the estimation of possible load reduction 
for the forthcoming DR, it is necessary to determine the 
contract capacity of minimal load reduction. Consequently, 
an optimization method is employed to maximize the profit 
based on the forecasting, the whole process is demonstrated 
in Fig. 6. 

In the proposed structure, two types of the demand-
bidding programs are discussed, i.e. reliable demand 
bidding and aggregated demand bidding. They can be 
described as follows:

1) Reliable Demand Bidding
According to the rule of the reliable DR, the overall 

objective function, which is to maximize the total incentive 
obtained from TPC is shown in (1). Equation (2)-(6) state 
the variables composing (1).

max (1) 
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Where 
•	 IDCm is the incentive of demand charge for the month 

m (NTD).
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reduction. Note that the two preference indices are the 
decision variables in the optimization.

IV. Simulation results

A. Simulation Parameters

1) Load Profiles of the Customers
In this section, the daily load data of summer and winter 

are employed for demonstration. There are two types of 
customers, HV and LV customers, and their load patterns 
are discussed in the following part. Note that it is assumed 
in this paper that one HV customer serving as aggregator 
and one thousand LV customers join in the DR program.

•	 High-Voltage Customer
As mentioned previously, in this paper, the aggregator 

is composed of one HV customer and lots of LV residential 
customers. For the HV customer, its loads can be simply 
divided into controllable loads and non-controllable loads 
here. The daily load patterns of January and August are 
used to stand for winter and summer, as shown in Fig. 8 
and Fig. 9. 

The load profile is the actual electricity use data 

The inequality constraints are listed in (12) to state the 
monthly minimum load reduction required for each DR in 
month m.

pcontr,m ≥ 100 kW	 (12)

It is used as a standard to evaluate the load-reduction 
capacity, if the amount is close to the contract capacity, 
then additional 5% of the bidding price would be paid as a 
reward. Note that the lower limit of the contract capacity for 
aggregated demand bidding is higher than that for reliable 
demand bidding. Besides, the limit of bidding price is the 
same as that of reliable demand bidding.

C. Cost Saving of Load Scheduling
The LV customers can save their electricity costs by 

rescheduling the schedulable loads in their buildings 
through HEMS according to different electricity tariffs. 

Where 
•	 ps,d,h is the total power consumption of schedulable 

loads at hour h on the day d (kWh).
•	 p’s,d,h is the total power consumption of schedulable 

loads after load scheduling at hour h on the day d 
(kWh).

•	 Pd,h is the hourly electricity price at hour h on the day 
d (NTD/kWh).

D. Formulation Correction for Low-Voltage Customer
Considering the fact that there may be forecasting error 

when estimating the load reduction of LV customers, a 
correction method is proposed to improve the practicality 
of the model as long as the actual data of the load reduction 
for each customers is available in the future. The flowchart 
of the correction method is shown in Fig. 7.

In this part, the goal is to correct the preference 
settings through the historical data of DR. Specifically, by 
comparing the historical data with the results forecasted 
by the built fuzzy system and current preference settings, 
and tuning the preference settings to make the forecasting 
result of load reduction as close as possible to the historical 
one. That is to say, the objective is to minimize the mean 
absolute percentage error (MAPE) between the adjusted 
preference settings and the historical data, as shown in 
(13).

min (13) å
=

-n

i i

ii

LR
LRLR

n 1 ,a

,a,f1

Firstly, in (13), LRf,i and LRa,i are the forecasted and 
actual load reduction respectively for each DR event. 
Secondly, the constraints are listed in (14) and (15).

 (14) 
 (15) 

10 ,inc ££ ipref

10 ,time ££ ipref

In these constraints, prefinc,i and preftime,i are the customer 
preferences for incentive and for execution time of the ith 
DR event, which are used as the inputs of the fuzzy logic 
system, and thus directly influence the prediction of load 
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Fig. 8 Daily load profile of high-voltage customer (Jan. 2016).
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measured from an industrial customer in Taiwan in 2016. 
Note that because of lack of actual controllable load data, 
the maximum of controllable loads, which are chillers 
here, is approximately assumed as half of the total load for 
load-reduction. Additionally, January and August of 2016 
are chosen as winter and summer for the simulation, which 
will be scaled up to one year.

•	 Low-Voltage Customer
Subsequently, for the LV customers, which are the 

residential customers, two types of houses would be 
discussed in the paper, one is the apartment and the 
other is the single-house. The realistic data of about 260 
LV customers comes from Austin, Texas [28]. In the 
simulation, the number of LV customers is scaled up to 
1000.

Different from the HV customer, the house loads are 
further classified into controllable loads and schedulable 
loads, the former includes air-conditioner and electric 
furnace, and the latter includes dishwasher, clothes washer, 
clothes dryer, and electrical vehicle charger. For the same 
reason as the HV customer, Fig. 10 and Fig. 11 individually 
depict the daily load profiles of the apartment customers for 
summer and winter. Similarly, Fig. 12 and Fig. 13 illustrate 
the load profiles of the single-house customers.

2) Electricity Tariffs
To verify the effect of different tariffs on the cost 

saving for LV customers, two tariffs are used as example 
for a brief comparison. The first tariff is the 2-stage time 
of use tariff from TPC [26], and the second tariff [27] is 
actually the local marginal price of the day-ahead market 
from Electricity Reliability Council of Texas (ERCOT). 
The price is related to the situation of supply and demand, 
which reflects congestion. 

B. Forecasting of Load Reduction and Incentive
Firstly, the necessary term that must be assessed is the 

bidding price, thus the prediction result of the clearing price 
of demand bidding is simply demonstrated. Subsequently, 
there are four scenarios simulated in this section, as listed 
in Table 1 and the forecasting results are shown in the 
following section.

1) Forecasting Result of Clearing Price
The bidding prices are predicted through NN described 

previously, the inputs and output are presented in Fig. 14. 
Note that the forecasted bidding prices are regarded as the 
clearing prices, which means the maximum price accepted 
by TPC. There are 7 times and 8 times of DR, which lasts 4 
hours each time, in January and August, respectively.

2) Forecasting Results of Scenario 1
For HV customer, the forecasting results of load-

reduction and corresponding incentive are depicted in Fig. 
15 - Fig. 17. In the presented results, the historical data of 
load reduction are used as actual load reductions, and the 
forecasting results come from the forecasting model. Note 
that the HV customer participates in reliable DR, thus it is 
reasonable for the penalty if the contract capacity of load 
reduction is not satisfied.

For LV customers, the forecasting results of load-
reduction and corresponding incentive are illustrated in 
Fig. 18 and Fig. 19. However, due to lack of the historical 
data, only the forecasting results are presented in this stage. 

Fig. 9. Daily load profile of high-voltage customer (Aug. 2016).

 

 
HV customer LV customers 

DR type DR type Customer type 
Scenario 1 Reliable Aggregated Apartment 
Scenario 2 Reliable Aggregated Apartment 
Scenario 3 Aggregated Aggregated Single-house 
Scenario 4 Aggregated Aggregated Single-house 

 

Table 1. Simulation scenarios.

 

 

Fig. 10. Daily load profile of apartment customer (Jan. 2016) 
(a) Total load, (b) Schedulable loads.

(b)

(a)

http://esrj.ru/


75

Energy Systems Research, Vol. 1, No. 3, 2018H.T. Yang et al.

Note that the LV customers take part in the aggregated DR, 
hence the contract capacities of load reduction determined 
by the DR algorithm are feasible according to the demand 
bidding rule introduced previously.

In forecasting results, the dash lines represent the optimal 
contract capacities of load reductions determined by DR 
algorithm. For example, the blue dash lines in Fig. 15 and 
Fig. 16 are the optimal contract capacities of Load reduction 
for the actual load reductions; the red dash lines are the same 
but for the forecasted load reductions. If the red dash line is 
close to the blue dash line, then it means that the result of 
load reduction forecasting is close to actual one.

 

 

 

 

 

 

(b)

(b)

(b)

(a)

(a)

(a)

Fig. 11. Daily load profile of apartment customer (Aug. 2016) (a) Total load, (b) Schedulable loads.

Fig. 12. Daily load profile of single-house customer (Jan. 2016) (a) Total load, (b) Schedulable loads.

Fig. 13. Discussed tariffs in the paper (a) 2-stage TOU tariff of TPC, (b) Real time price of ERCOT.

3) Forecasting Results of Scenario 2
Similar to scenario 1, the main difference between 

scenario 1 and scenario 2 is the type of LV customers. 
Therefore, the forecasting for HV customer is totally the 
same as presented in scenario 1. The forecasting result of 
load reduction and incentive for the single-house customers 
are shown in Fig. 20 and Fig. 21. 

According to the results, the overall incentives received 
by single-house customers apparently surpass those of 
apartment customers. The results are directly led by the 
total capacity of the controllable loads. However, the 
capacity of schedulable loads is another significant source 
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(b)

(b)

(b)

(a)

(a)

(a)

Fig. 14. Forecasting result of bidding price (a) Inputs of the neural network, (b) Output of the neural network.

Fig. 15. Forecasting result of HV customer in scenario 1 (winter) (a) Load reductions (LR) and contract capacity of load reduction 
(CCLR),  (b) Incentives of energy charge for the corresponding load reduction.

Fig. 16. Forecasting result of HV customer in scenario 1 (summer) (a) Load reductions (LR) and contract capacity of load reduction 
(CCLR), (b) Incentives of energy charge for the corresponding load-reduction.

that indirectly influences the load reduction during DR. 
Based on the calculation rule for actual load reduction, 
the load reduction for each DR can be raised up through 
technical manipulations of the schedulable loads. In other 
words, the schedulable loads are shifted to the same hours 
of DR execution during five days before DR event to 
heighten the baseline load, thus increasing the actual load 
reduction.

4) Forecasting Results of Scenario 3
Different from the previous scenarios, the HV and LV 

customers join the aggregated DR together. As a result, the 

historical load reduction data of the HV customer are used 
as the basis for the comparison of forecasting. Even though 
there are only the forecasting results for LV customers, 
the simulation results show the aggregated load-reduction 
capacity of HV and LV customers, as presented in Fig. 22 
and Fig. 23.

Since it is much more stable for the HV customer to 
reduce electricity consumption during DR event than for 
the LV customers, there is no doubt that the success rate 
for execution DR would be higher through the aggregation 
of HV and LV customers. However, due to the absence of 
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(b)

(b)

Fig. 17. Incentive of demand charge of HV customer.

(a)

(a)

Fig. 18. Forecasting result of LV customer in scenario 1 (winter) (a) Load reductions (LR) and contract capacity of load reduction 
(CCLR), (b) Incentives of energy charge for the corresponding load reduction.

Fig. 19. Forecasting result of HV customer in scenario 1 (summer) (a) Load reductions (LR) and contract capacity of load reduction 
(CCLR), (b) Incentives of energy charge for the corresponding load reduction.

the incentive for demand charge in the aggregated DR, the 
overall incentive for the HV customer is accordingly less 
than that received in scenario 1 and scenario 2. Moreover, 
since there is no penalty in the aggregated DR, it is suitable 
for the HV customer even if the forecasting accuracy is not 
precise enough.

5) Forecasting Results of Scenario 4
As the comparison of scenario 1 and scenario 2, the 

simulation results here show the difference from scenario 

3. In scenario 4, the HV customer cooperates with single-
house customers on the aggregated DR as shown in Fig. 
24 and Fig. 25. As discussed previously, with the larger 
controllable load capacity, the single-house customers 
have the potential to earn more incentive for DR execution. 
Besides, the HV customer chooses to take part in aggregated 
DR, which is a more conservative option. 

In summary, by means of appropriately selecting the 
LV customers who have more potential in DR, the overall 
incentive received from TPC would be considerable even 
if the HV customer participates in the aggregated DR. In 
order to make a clearer comparison, the total incentives for 
the four scenarios are listed and discussed in the following 
section.

6) Summary for the simulation of the four scenarios
To sum up the four scenarios, Fig. 26 shows the 

effective annual incentive received. As the comparison in 
the Figure, it is obvious that the total incentive of scenario 
2, where the HV customer participates in reliable DR and 
cooperates with the single-house customer, is the highest 
due to the additional incentives of demand charge for 
reliable DR and the incentives of energy charge earned 
through the large controllable load capacity of the single-
house customers. Nevertheless, there is still an issue that is 
the risk for selecting reliable or aggregated DR, which is 
discussed in the later section.
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(b)

(b)

(b)

(a)

(a)

(a)

Fig. 20. Forecasting result of LV customer in scenario 2 (winter) (a) Load reductions (LR) and contract capacity of load reduction 
(CCLR), (b) Incentives of energy charge for the corresponding load reduction.

Fig. 21. Forecasting result of LV customer in scenario 1 (winter) (a) Load-reductions (LR) and contract capacity of load-reduction 
(CCLR), (b) Incentives of energy charge for the corresponding load-reduction.

Fig. 22. Forecasting result of HV and LV customers in scenario 3 (winter) (a) Load reductions (LR) and contract capacity of load 
reduction (CCLR), (b) Incentives of energy charge for the corresponding load reduction.

C. Cost Savings of Load Scheduling Considering 
Different Tariffs

For each LV customer who has established HEMS in 
house, the profit can be obtained not only from the DR 
program but also from the cost saving from daily power 
consumption. Therefore, a simple comparison of the cost 
saving by load scheduling for different kinds of customer 
is performed. In the meanwhile, two tariffs are compared 
for the reason that more and more tariffs may be published 
in the future.

It is apparent that the single-house customers have 
much greater saving than the apartment customers owing 
to the significant difference in their power consumption of 
schedulable loads. Besides, another noticeable point is that 
the effect of different tariffs, the real-time price of ERCOT 
brings the LV customers additional savings due to the 
larger price difference between hours in one day.

1) Cost-Benefit Analysis
In order to evaluate the profit, the hardware cost is taken 

into account. The recent costs of HEMS are approximately 
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(b)

(b)

(b)

(a)

(a)

(a)

Fig. 23. Forecasting result of HV and LV customers in scenario 3 (summer) (a) Load reductions (LR) and contract capacity of load 
reduction (CCLR), (b) Incentives of energy charge for the corresponding load reduction.

Fig. 24.  Forecasting result of HV and LV customers in scenario 4 (winter) (a) Load reductions (LR) and contract capacity of load 
reduction (CCLR), (b) Incentives of energy charge for the corresponding load reduction.

Fig. 25. Forecasting result of HV and LV customers in scenario 4 (summer) (a) Load reductions (LR) and contract capacity of load 
reduction (CCLR), (b) Incentives of energy charge for the corresponding load reduction.

Fig. 26 Comparison of different scenarios

Table 2. Discussed cases for cost-benefit analysis.
 

 Hardware costs 
(NTD/customer) 

Hardware 
lifetime (Year) 

Case 1 50,000 2 

Case 2 37,500 4 

Case 3 25,000 6 
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NTD$50,000. Considering that the hardware cost may 
drop and its reliability may be improved in the future, as 
in case 2 and case 3 shown in Table II, the cost used in the 
simulation is the annually equivalent cost considering the 
interest rate of 3% and the life time of hardware for each 
case.

V. Conclusion

This paper has proposed a scheme to assess the 
potential of making profit for an aggregator to participate 
in the demand bidding in Taiwan. Techniques such as 
neural network and fuzzy logic system are employed for 
the forecasting of clearing price and load reduction, and 
the contract capacity of load reduction is decided through 
demand response algorithm. The simulation results have 
shown the evaluated effects for an aggregator to take part 
in two different types of DR and cooperate with two types 
of LV customer. The result has demonstrated the fact that 
the profit would be considerable when the aggregator signs 
reliable DR and aggregates single-house customers to 
execute aggregated DR.

However, there exists a different level of risk between 
reliable DR and aggregated DR. Based on the bidding rule, 
the aggregated DR has a larger tolerance for forecasting 
error than reliable DR, and it is verified in section 4. In 
addition, the cost-benefit analysis is performed to help the 
aggregator to make decision and evaluate the corresponding 
profit in a year. Finally, a correction process is proposed to 
improve the accuracy of the load reduction forecast for LV 
customers through realistic load-reduction data.
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