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Abstract — Gasification of solid fuels is a way to improve 
technical and environmental efficiency of solid fuels in 
the energy sector. Typically, gasifiers for large power 
stations operate as entrained flow reactors: pulverized 
coal particles are carried by gasification agent and 
undergo conversion stages. The study examines a 
single-stage process of steam-air coal gasification 
considering preliminary high-temperature air heating. 
To this end, a mathematical model is used, which 
includes the equations of one-dimensional transport 
and chemical transformations of fuel and gas mixture. 
The calculations show the main characteristics of the 
gasification process and their dependence on control 
parameters: air heating temperature, stoichiometric 
ratio and steam consumption.

Index Terms — coal, gasification, high-temperature air, 
numerical modelling.
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plants use entrained-flow gasifiers in which coal dust (or 
coal slurry) is gasified in pressurized gaseous medium [5–
7]. Oxygen-steam mixture is usually used as a gasification 
agent, however, there are also reactors that use air-steam 
mixture. Air is less commonly used in IGCC because 
low oxygen concentration and low flame temperature 
make it difficult to achieve full conversion of fuel at low 
stoichiometric ratios.

The latter problem can be solved by heating the 
gasification agent to high temperatures, similar to the 
processes of HiTAC and MILD combustion [8–12]. In this 
case, the losses associated with heating the system to the 
ignition temperature are reduced, and the energy costs of 
the endothermic reaction of the formation of combustible 
gases are partially compensated. On the one hand, it is 
possible to reduce the auxiliary power supply  due to the 
rejection of air separation; on the other hand, the load on the 
compressors increases significantly and, most importantly, 
the thermodynamic and kinetic parameters change (due 
to the need to heat inert nitrogen and the decrease in the 
reactant gases concentration in the reaction zone of the 
gasifier).

High-temperature heating can be carried out using 
plasma sources [13] or burning additional fuel (natural 
gas, coal) [14, 15]. Issues of the implementation of high-
temperature heaters are discussed in [16–18]. High-
temperature gasification agent can also be used to gasify 
coal in oxyfuel conditions for efficient sequestration of 
СО2 [19–21]. The kinetics of high-temperature conversion 
of coal and semicoke was studied in [22, 23]. Methods for 
high-temperature air gasification of biomass and waste 
are proposed in [24–26]. Mathematical models for high-
temperature fixed-bed and entrained-flow gasifiers were 
proposed in [27–34]. Conversion of coal particles and coal-
water droplets in a stream of heated gases was studied in 
[35–39]. Efficiency of high-temperature coal-fueled power 
plants was estimated at [40–42].

In previous studies [31, 32], air heating effect was 
studied for a two-stage gasifier. However, at a sufficiently 
high air temperature, a one-stage process could be used. 

I. Introduction

Improvement in the technical and environmental 
efficiency of solid fuel in the energy sector is an important 
scientific and technical issue [1]. One of the ways to solve 
it may be a transition from a steam cycle to a more efficient 
integrated gasification combined cycle (IGCC) [2]. The 
capacity of IGCC plants in the world is constantly growing, 
mainly in chemical and petrochemical industries and, to a 
lesser extent, in coal-fired power generation [3, 4]. This is 
due to a number of problems, such as insufficient reliability 
and high capital costs.

Most of integrated coal gasification combined cycle 
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In this paper, using numerical simulation, we investigate 
coal gasification in a one-stage entrained flow reactor with 
heated steam-air media. Stationary operation of the gasifier 
under different conditions are considered, and optimal 
parameters in the selected parameter range are evaluated.

II. Mathematical model of coal  
gasification process

The model is based on the heat balance of coal particles 
and the gas film around them. The following assumptions 
are made about the course of the gasification process [43, 
44]:
1.	 the drying rate is limited by external mass transfer of 

particle with gaseous medium;
2.	 the pyrolysis rate is proportional to the content of 

volatiles in the particle and depends on temperature 
according to the Arrhenius law;

3.	 the gasification rate is determined from the well-known 
equation of the diffusion-kinetic theory of carbon 
combustion.
The heat balance equation for a coal particle is written 

as follows:

 ( ) ( ) ( )4 4 .p p
p w p T g p w r

d m T
c S T T S T T Q Q

d
= es - + a - - +

t
Here cp is the specific heat of the fuel, J kg-1 K-1; mp is 

current particle mass, kg; Tp is particle temperature, K; 
ε is the degree of the particle blackness; σ is the Stefan-
Boltzmann constant, W (m-2 K-4); S is a particle surface 
area, m2; Tw is ambient temperature, K; α is convective 
heat transfer coefficient, W m-2 K-1); Qw is heat of moisture 
evaporation, W; Qr is heat of chemical reactions, W.

Drying rate is calculated by the formula:
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Here Kw is drying rate constant, m/s; CH2O is the 
concentration of water vapor, kg m-3.
The coefficient of convective heat and mass transfer for a 
particle in a stream is calculated by the formula:
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Here Nu is the Nusselt number; Sh is the Sherwood 
number; Rep is the Reynolds number for the velocity of the 
carrier flow and current particle size.
The pyrolysis rate is described by the first-order kinetic 
equation:
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Here mV is the mass of volatiles in the particle, kg; k0
V 

– pre-exponential factor, s-1; EV is the activation energy of 
the pyrolysis stage, J/mol; R is the universal gas constant, 

  
Fig. 1. The dependence of cold gas efficiency (%) on 
stoichiometric ratio, initial air temperature and steam 
consumption.

Fig. 2. The dependence of fuel conversion degree on 
stoichiometric ratio, initial air temperature and steam 
consumption.
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J mol-1 K-1. The volatiles in the model are represented by 
a mechanical mixture of chemical elements. After exiting 
the fuel particle, volatiles achieve their molecular forms 
according to the conditions of chemical equilibrium.

The reaction rate of the fuel with gaseous oxidizing 

agents is recorded as follows:  C
eff ox

dm
k SC

d
= -

t
Here mC is the mass of fuel, kg; keff is effective rate 

constant for heterogeneous reaction, m/s; S is a fuel surface 
area, m2; Cox is the oxidizer concentration, kg m-3.
The effective rate constant is expressed in terms of the 
kinetic and mass transfer coefficients (assuming that the 
kinetic order of the reaction with respect to the oxidant is 
one) as follows [45]:

 C d
eff

C d

k k
k

k k
=

+
Here kC is the kinetic rate constant for a heterogeneous 
reaction, m/s; kd is the mass transfer coefficient of the 
particle with the flow, m/s.
The kinetic rate constant for a heterogeneous reaction 
depends on temperature exponentially:

 0 exp a
C C

E
k k

RT
= -æ ö
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Here k0
C  is the pre-exponential factor, m/s; Ea is activation 

energy, J/mol.

Overall change in particle mass is written as follows:

 p w V C
dm dm dm dm
d d d d

= + +
t t t t

Chemical kinetics of reactions in the gas phase is not 
considered. It is assumed that substances entering the 
gas phase attain a state of equilibrium. Thus, chemical 
transformations are described using a thermodynamic 
model with macrokinetic constraints on the rate of 
heterogeneous transformations [46, 47]. This approach is 
applicable to high-temperature processes in which the rates 
of gas-phase processes are quite high compared to the rates 
of heterophase processes [48].

The model proposed is stationary and one-dimensional. 
Similar models were previously used in [49–51] to estimate 
characteristics of the gasification process.

III. Initial data and results

A tube reactor with a fuel capacity of 100 t/h and working 
pressure of 30 atm is considered. The length of the reaction 
zone is 15 m; inner diameter is 3 m. The temperature of 
the fuel entering the reactor is 27°C; steam temperature is 
323°C; air temperature varies from 100°C to 1000°C (with 
increments of 100 degrees). Steam consumption varies from 
0 to 0.2 mol/mol of carbon, stoichiometric ratio varies from 
0.1 to 0.7 (with increments of 0.05). Coal characteristics are: 
W r  = 2%; Ad = 15.38%; Vdaf = 29.42%; Cdaf = 85.45%;  
Hdaf = 4.86%; Ndaf = 2.0%; Sdaf = 0.67%.

  
Fig. 3. The dependence of maximum combustion temperature 
on stoichiometric ratio, initial air temperature and steam 
consumption.

Fig. 4. The dependence of outlet gas temperature on 
stoichiometric ratio, initial air temperature and steam 
consumption.
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The following characteristics were selected as key 
indicators: cold gas efficiency, or CGE, (fraction of the 
solid fuel combustion heat converted to the combustion 
heat of produced gas), maximum and final gas temperature, 
degree of fuel conversion, and concentration of combustible 
components in the produced gas.

 100%
out

g g
in

f f

Q G
CGE

Q G
=

The calculation results are presented in Figs. 1–6. 
Fig. 1 shows the contours of cold gas efficiency of the 
gasification process for different temperatures and specific 
air flow rates. A well-known pattern is observed: with a 
change in stoichiometry, the efficiency of the process has 
an extremum at fixed air initial temperature, corresponding 
to a complete fuel conversion (see Fig. 2) [52, 53]. An 
increase in air temperature enhances efficiency only if there 
is a sufficient amount of steam. Steam consumption of 0.2 
mol/mol (C) allows increasing the cold gas efficiency of 
gasification from 72% (without additional steam) to 84%. 
Additional steam allows reducing the temperature in the 
core of the torch and at the reactor outlet (Figs. 3, 4).

At low stoichiometric ratio and low temperatures, the 
cold gas efficiency drops sharply: oxidative pyrolysis occurs 
under unstable temperature conditions, and large underburn 
is observed (Fig. 2). An increase in the stoichiometric 
ratio over optimal values (0.3–0.4) leads to the oxidation 

of combustible gaseous components, which also leads to 
a decrease in efficiency, and this dependence is almost the 
same at each steam consumption (Fig. 1). As seen in Fig. 
5, the stoichiometric ratios corresponding to maximum 
concentration of CO are shifted toward the pyrolysis region, 
while the maximum of Н2 formation corresponds to the 
maximum of cold gas efficiency (Fig. 6).

The diagrams of the dependence of the outlet gas 
temperature on the gasification conditions (Fig. 4) make it 
possible to choose the gasification parameters considering 
requirements of produced gas cooling and purification 
systems [54, 55]. As already mentioned above, the 
increases in the initial temperature improves the efficiency 
of gasification. In this case, the optimal value of the 
stoichiometric ratio decreases, and also due to the decrease 
in the gas density, the average gas velocity changes. 
Therefore, at high gasification agent temperatures, the 
efficiency of the process begins to decline due to a decrease 
in particles residence time in the reactor. Therefore, the 
length of the reactor should be a variable parameter (for 
future research).

IV. CONCLUSION
A numerical study of the pulverized coal gasification 

process in entrained flow of heated air-steam mixture 
was performed. A grid of control parameters (initial air 
temperature, stoichiometric ratio, steam consumption) was 

  
Fig. 5. The dependence of CO content in produced gas (% 
vol.) on stoichiometric ratio, initial air temperature and steam 
consumption.

Fig. 6. The dependence of H2 content in produced gas (% 
vol.) on stoichiometric ratio, initial air temperature and steam 
consumption.
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set, in which the dependences of the main characteristics of 
the gasification process were obtained (cold gas efficiency, 
temperature, gas composition). The calculations show the 
possibility of enhancing the cold gas efficiency up to 84% 
with a steam consumption of 0.2 mol/mol of carbon fuel 
when air is heated to the temperatures of about 800°C.
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