
Energy Systems Research, Vol. 2, No. 3, 2019

73

Optimization of the Algorithm for Finding
Spanning Trees of a Graph

A.R. Dzhandigulov1, D.S. Akhmetbaev2,*, A.D. Akhmetbaev3

1 L.N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan
2 S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
3 Information Systems Directorate, «Kazakhtelecom» JSC, Almaty, Republic of Kazakhstan

Abstract — The paper presents one of the possible
variants of optimization of the algorithm for finding
all spanning trees of the graph from the point of view
of the application of the results of calculations in the
topological study of complex electric power systems.
The first stage of the topological analysis of the network
is the search and determination of the values of all
possible trees of the graph corresponding to a given
energy system. The computational complexity of the
algorithm for finding and determining the weights of all
spanning graphs increases as the branches and nodes of
the power grid network increase.
The main idea of optimization is to build special classes
of trees. At the same time, in the process of grouping,
parts of future graphs that are "parent" for groups
of graphs are allocated and corresponding graphs of
significantly smaller dimension are constructed. If the
analysis is time-consuming, the grouping process can
be applied to each graph found.

Index Terms — network topology, graph tree.

* Corresponding author.
E-mail: axmetbaev46@mail.ru

http://dx.doi.org/10.25729/esr.2019.03.0009
Received August 11, 2019. Revised October 26, 2019.
Accepted Novenber 3, 2019. Available online December 25, 2019.

This is an open access article under a Creative Commons
Attribution-NonCommercial 4.0 International License.

© 2019 ESI SB RAS and authors. All rights reserved.

• in the topological analysis of current distribution
coefficients in electric networks [3], etc.
The problem of finding all spanning trees of a graph

is computationally time-consuming, since their number
grows exponentially depending on the number of edges
of the graph under study. Therefore, there is a need to
improve the search algorithms for possible graph trees,
in relation to the problems of the electric power industry.
For example, to find the current distribution coefficients
of electric networks, the ratio of the sum of the weights of
specific trees to the sum of the weights of various trees of
the graph is calculated [4]. In this case, the weight of a tree
is understood as a complex product of the conductivities of
its branches, taken with a sign, depending on the orientation
of the branch.

In [5,6] an effective algorithm of directed search and
determination of weights of possible graph trees without
involvement of previously defined trees is implemented.
The main idea of this algorithm is as follows. Let be a
connected graph with n-nodes and m-branches. We produce
a directed (excluding repetition) selection of n-1 branches
from m - given. For each sample, we check for the presence
of a cycle. In this case, the check is carried out from two
sides, that is, from the first and last branches of the sample.
If any subset of branches from the sample forms a loop,
then all variants containing this subset are excluded from
the search. This algorithm works successfully in the case of
a weakly filled vertex neighborhood matrix (n≥0.8 m) [7].
With a more complete matrix of incidents, the execution
time of the program increases many times.

In this paper, we propose an optimal algorithm for
finding graph trees based on partitioning the entire set of
trees, into disjoint classes, by considering several generated
graphs instead of the original graph. These graphs are
obtained from the original graph, by "removing" the nodes
and branches selected in a certain way. The graphs obtained
in this way have significantly fewer spanning trees, and
from the latter, the spanning trees of the original graph are
obtained by the inverse addition of "remote" branches and
nodes.

I. IntroductIon

The need to construct all spanning trees of a given
graph appears in many cases:
• when searching for an optimal tree in some sense,

when the optimality criterion is so complex that
the construction of an optimal tree at once is
impracticable [1];

• when finding the transfer function of the system [2];

Energy Systems Research, Vol. 2, No. 3, 2019A.R. Dzhandigulov et al.

74

II. optImIzatIon of the algorIthm

Let be a graph with n-nodes and m-branches. The
optimization process consists of several steps.

Step 1. Selection and "removal" of hanging branches
with terminal vertices (nodes), as they are included in any
spanning tree.

Step 2. Selecting and" gluing " paired branches, that
is, branches that connect the same nodes. Since, in the end,
when calculating the current distribution coefficients, only
the products of the complex resistances of the branches are
involved, the resistances of the paired branches simply add
up.

Step 3. Let n1– be the number of remaining nodes, m1–
be the number of remaining branches. We allocate a set of
V-nodes incident to only two branches. Let R be the set of
edges incident to the set of nodes V. Let the powers of these
sets be |V| = α, |R|=β. It is obvious that α ≤2β.

Step 4. From the set R we choose those branches that
are "repeated" twice. We also set the condition that the
repeating branch is not part of a triangular cycle, although
this case can be considered, if necessary, for further splitting
the set of spanning trees into classes. There are cases
when such repetitions go one by one, forming a chain of
branches. In this case, select only one of these branches.
Let R1 = {ri,1, ri,2 ... ri,k} be a subset of the set R. Now,
instead of the original graph, consider the graphs in which
the specified branches r(i,j),j = 1 ... k of the set R1 is either
exactly there (denoted by r(i,j) = 1), or exactly not (similarly
denoted by r(i,j) = 0). Obviously, there will be 2k such graphs.

In the variant, where of k branches there are no
l-branches and k-l branches there are, we will have 2l

hanging branches. And after applying step 1 to such
a graph, we get a graph whose number of nodes is
n1-2l-(k-l) = n1 - (k+l) nodes, and the number of branches
m1-3l - (k-l) = m1 - (k+2l).

Step 5. If in some graph there is a branch r(i,j), which
is incident to two nodes vj1,vj2, then instead of this graph,
we can consider a graph, which instead of such two nodes
will have one node, and the number of branches respectively
decrease by one.

As a result of constructing the subtrees of the graph
with such steps we get:

1. Reducing the time spent on the study of such graphs.
2. The possibility of parallelization of the calculations of

the graphs.
3. All "deleted" branches are necessarily included in the

spanning tree of the original graph.
4. Adding "deleted" branches back to the spanning trees

is necessary to find possible trees of the original graph.
5. The set of spanning trees corresponding to the graphs

in question do not intersect and their Union yields all
possible trees of the original graph.

III. an example applIcatIon of the
optImIzatIon process

Let's describe the optimization process on the example
of the scheme (Fig. 1), is given in [7].

In this work the number of possible trees equal to 85
is obtained. In this scheme, the number of nodes n = 9, the
number of branches m = 11.

Fig. 1. Scheme of 220 kv network.

Nodes -𝑣𝑣" 2 4 5 6 7 8
1st branch	𝑟𝑟%," 2 (1) 7(3) 8(4) 6(3) 3(1) 11(7)

2nd branch	𝑟𝑟'," 4(3) 8(5) 10(9) 9(9) 11(8) 5(3)

Table 1. A set of nodes incident to only two branches.

Fig. 2. Splitting the original graph into 4 graphs.

Energy Systems Research, Vol. 2, No. 3, 2019A.R. Dzhandigulov et al.

75

Step 1. In the scheme under consideration there are no
hanging branches with terminal vertices (nodes).

Step 2. In the scheme under consideration, there are no
branches linking the same nodes.

Step 3. In the scheme under consideration,
n1 = n = 9, m1 = m = 11. For the considered scheme we have
the following data given in table. 1.

The nodes associated with this branch are indicated in
parentheses.

Step 4. From the set R we choose those branches
that are "repeated" twice. In the above table. 1 these are
branches 8 and 11. In our case k = 2. Thus, the original
graph corresponding to the scheme shown in Fig. 1, is
divided into 4 graphs (fig. 2).

In the first graph, instead of two pairs of nodes 4-5 and
7-8, there will be two nodes. Thus, the number of nodes
and the number of edges will decrease by two, compared
to the original graph. In the second graph, instead of a pair
of nodes 4-5, there will be one node, and the 11th branch
will not be, since branches 3 and 5 will become "hanging".
In the third column, instead of a pair of nodes 7-8, there
will be one node, and the 8th branch will not be, since
branches 7 and 10 will become "hanging". In the second
and third graphs, after applying step 1, the number of nodes
will decrease by three, and the number of branches will
decrease by 4 compared to the original graph. In the fourth
graph, the graph removes branches 8 and 11, resulting in 4
hanging branches. Thus, after applying step 1, the number
of nodes will decrease by 4, and the number of branches by
6 compared to the original graph.

If we calculate the number of possible spanning trees
of the original graph by a known method, we get a number
equal to 85. And the distribution of the number of spanning
trees in the resulting four graphs will be as follows: 1
graph-48, 2 and 3 graphs - 16, the 4th graph has only 5
spanning graphs.

Similar calculations for the test 14-node scheme (IEEE)
yield the following results: only one Union of nodes 10
and 11, with branch 18, is Possible. The number of trees
with Union is 2182, without this branch 927. In sum, we
get the known number 3909. It should be noted that, if on
a simple laptop Intel Core I3-6006UCPU @ 2.00 GHZ
1.99 GHz And 4.00 GB of RAM to calculate the number
of branches of the original graph 14-node scheme took
1438 milliseconds, the split for the first class took 432
milliseconds, and the second subclass 97 milliseconds.

The efficiency of this partition will be significantly
manifested when considering schemes with more connected
graphs. In particular, if we consider the test IEEE 30-node
scheme with 41 branches, which has 7 824 000 spanning
trees. If you consider that each tree has 29 branches, you
need to remember the database of 453 792 000 at least
two-digit numbers, and 900 times to search for the desired
branches, to calculate the current distribution coefficients.
Firstly, it will require large machine-time resources, and
secondly, the rounding error will accumulate.

However, many trees have significant identical
parts, respectively, the contribution of these parts in the
calculation of current distribution coefficients is also the
same, these contributions are simply summed. Therefore,
the same parts can be placed outside the brackets, which
significantly reduces the required number of calculations.

When splitting, parts of future trees are immediately
allocated, so in the remaining parts, which are a graph
with a smaller dimension, the number of search options is
significantly reduced.

Note that for the specified IEEE test 30-node scheme,
in which the number of possible spanning trees is
7 824 000, k = 4. That is, the set is divided into 16 classes.
In the largest class there are 2,500,749 trees, that is 31.9%
of the total number of graphs. In this case, the number
of nodes of the resulting graph is 23, and the number of
branches is 34. And in the most recent small class, the graph
has 18 nodes and 25 branches, the number of spanning
trees is 25,191 (0.3% of the total number of trees).

IV. conclusIon

1. The optimal algorithm search all possible spanning
trees of a given graph based on the partitioning of many
kinds of trees on disjoint classes, while additional branches
of the spanning tree.

2. It is shown that such a partition significantly reduces
the required number of calculations.

3. As a result of the proposed partition, the tasks
are divided into several subtasks, each of which can be
calculated in parallel and independently of each other.

4. Optimization efficiency is found to be essential for
schemes with more filled connections.

references

[1] Christofides N. Graph Theory. Algorithmic approach.
M .: Mir, 1978, - 432 p.20.

[2] Mayeda W. Graph Theory. Wiley- Interscience, New
York, 1972.

[3] Geraskin O.T. Topological content of nodes and
circuits of the electrical network and the calculation of
their size with the help of a digital computer, Izvestia
ANSSR. Energy and transport, 1966. №2. - pp. 59-70,
(in Russian.)

[4] David Avis, Komei Fukuda. Reverse search for
enumeration. Discrete applied mathematics 65, pp.
21-46, 1996.

[5] Akhmetbayev D.S., Aubakir D.A., Sarsikeyev
Y.Zh., Bainiyazov B.A., Surkov M.A., Rozhkov V.,
Ansabekova G.N., Yerbolova A.S., Suleimenov A.T.,
Tokasheva M.S. Development of Topological Method
for Calculating Current Distribution Coefficients,
Complex Power, Networks, Results in Physics, vol. 7,
рр. 1644–1649, 2017.

[6] A. R. Dzhandigulov, D. S. Akhmetbaev Finding all
spanning graphs of a given graph. computer program,
2019.

Energy Systems Research, Vol. 2, No. 3, 2019A.R. Dzhandigulov et al.

76

[7] Akhmetbayev D., Dzhandigulov A. Development
of algorithms for a new topological method for
calculating current distribution coefficients in
complex electrical networks, Eurasian Journal of
Mathematical and Computer Applications, ISSN
2306–6172 Vol. 7, Issue 3, pp. 4–12, 2019.

