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Support Vector Machines for Providing 
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Abstract — The development of present-day power 
systems is associated with the wide use of digital 
technologies and intelligent algorithms in control and 
protection systems. It opens up new opportunities to 
improve relay protection and automation hardware 
and develop its design principles. Simulation modeling 
becomes a new tool not only for studying power systems 
operation but also for designing new relay protection 
methods.
The use of simulation modeling in combination with 
machine learning algorithms makes it possible to create 
fundamentally new types of digital relay protections 
adaptable to a specific protected facility and able to use 
all the available current and voltage measurements to 
the fullest extent possible. Machine learning also allows 
developing auxiliary selective elements for improving 
the basic characteristics of existing relay protection 
algorithms such as selectivity, sensitivity, and speed 
of operation. The paper considers an example of 
designing an auxiliary element to provide selectivity in 
the backup zone of distance protection. The problem 
is solved using one of the most widely known machine 
learning techniques, i.e., the method of support vector 
machines (SVM).
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complete protection of the adjoining network components. 
This approach increases the reliability of relay protection 
systems and power supply systems in general.

It is worth noting that it is not always possible to provide 
effective fault detection in the distance protection backup 
zone with the non-unit protection scheme. Let us consider 
part of an electrical grid shown in Fig. 1. The second zone 
of distance protection of the power line ω1 must cover 
the entire line ω1 and partially back up protections of the 
parallel line ω2, the adjoining line ω3, and the transformer 
Т1.

According to the regulations [1], the following 
restrictions are imposed on the value of reach settings of 
the second zone of distance protection (Table 1).

To evaluate the efficiency of the distance protection 
backup zone of line ω1, we will collect statistical data 
on faults on the components adjoining the given line. To 
this end, we will use the Monte-Carlo simulation method. 
The method suggests multiple simulations of the analyzed 
objects with a set of parameters randomly generated 
according to a given distribution law. In the model of the 
considered electrical grid, these parameters are rms value 
and angle of voltage in system A (ranges of values are 
given in Fig. 1, the distribution law is uniform), distance 
to the fault, and arc resistance. After all the parameters of 
the current experiment are obtained, a system of contour 
equations defining the equivalent circuit of the grid is built 
and solved. This allows determining the currents in branches 
and voltages at nodes based on which one can calculate the 
measurement of a distance protection impedance and other 
parameters of the operating conditions to be simulated.

Let us place a set of simulated short-circuit conditions 
in the adjoining components on a complex plane of 
distance protection of line ω1 and highlight those of 
them which make it impermissible for the second zone 
of distance protection of line ω1 to operate because of the 
offset conditions (Fig. 2).

Since the power line ω3 is relatively short (and hence 
has a low impedance), the condition of adjusting the reach 

settings 
1trip

IIz
w

 with 
3trip

Iz
w

 according to (1) essentially 

limits the value of 
1trip

IIz
w

.

Thus, a large part of faults on the parallel line ω2 and 
in the transformer Т1 appear to be beyond the second zone 
of line ω1 (Fig. 2). Accurate calculations show that only 

I. Introduction

Distance protection is one of the most widely spread and 
effective types of conventional non-unit relay protection. 
It is usually used in electrical grids with a complex 
configuration where the use of simpler overcurrent relays 
is unacceptable due to either their low sensitivity or 
inability to provide selectivity.Apart from the protection 
of its main zone, distance protection provides partial or 
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42.7% of faults in the primary winding of the transformer 
and 5.8% of faults on line ω2 fit this characteristic. It means 
that in the cases where the main protections fail, most of 
the faults on the parallel line and in the transformer will 
be cleared only by the third zone of distance protection of 
line ω1. Since the third zone has a longer operation time, 
the protected components are more likely to suffer severe 
damage caused by long-lasting overcurrent.

The improvement of distance protection and its reach 
zone expansion can be achieved by using special fault 
detection systems able to indicate a faulted component in 
the grid. With such systems, the second zone of distance 
protection of line ω1, which is set according to (1-3), can be 
replaced by three independent zones. These zones will have 
the same time settings, and their reach settings will meet 
one of the conditions (1-3), respectively. By combining the 
mentioned zones with the selection elements as shown in 
Fig. 3, the reach point of the distance protection can be 
shifted further in the backup zone (increase sensitivity), 
which will completely exclude the possibility of false 
operation.

Thus, to provide efficient backup protection of the 
electrical grid components with sufficient operation time 
it is appropriate to use special algorithms for identification 
of emergency states. The concept of multi-dimensional 

 Fig. 1. The scheme of the analyzed electrical grid section.

 
1 – Normal conditions; 2 – Faults on T1 primary winding; 
3 – Faults behind T1 (on ω4); 4 – Faults on ω2; 5 – Faults on 
ω2 (out of ω2 first zone); 6 – Faults on ω3; 7 – Faults on ω3 
(out of ω3 first zone); 8 – ω1 second zone characteristic;

Fig. 2. The results of the simulation modeling.
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Table 1. Distance protection second  zone reach setting 
conditions
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(multi-parameter) relay protection can be used to develop 
such algorithms.

This concept views relay protection as a discriminative 
system monitoring a specific set of information features, 
including operating parameters of the protected facility, 
which are available for measurement. The features are 
integrated into a feature space, and possible states of the 
protected facility (both feasible and unfeasible) constitute 
regions in the feature space similar to those on the 
impedance plane in Fig. 2. Unlike distance protection, 

however, the multi-dimensional approach uses features 
selected individually for a specific task, and their number 
(dimension of the feature space) can also vary. The features 
and their number should be selected based on the simplicity, 
illustrative representation, and sensitivity of the protection 
algorithm.

The decision rule of the multi-dimensional relay 
protection is usually obtained from an automated analysis 
of simulation data of the protected component. The 
procedure for classification of any observed state involves 
calculating coordinates of a point, which corresponds 
to a state in the selected feature space, and determining 
whether the obtained point is within the operation range 
set by the decision rule. In terms of machine learning, the 
implementation of multi-dimensional relay protection is 
a supervised classification problem, which, among other 
things, can be solved by the method of support vector 
machines.

The paper considers an example of using the support 
vector machines to design selective elements providing 
increased sensitivity of the second zone of distance 
protection.

II. Literature review 
The approach presented in [2-5] proposes a mapping 

of possible states of a protected facility onto one or 
several setting planes formed by arbitrary features. 
Similarly to machine learning methods, this approach 
assumes the protection decision rule to be formed via 
supervised classification. The simulation model of a 
protected component is usually used as a teacher. Based 
on the simulation results, the regions of normal and fault 
conditions are displayed on predefined setting planes. 
Unlike most of the machine learning techniques, this 
approach does not suggest the formation of regions in 
feature spaces with more than two dimensions.

There are also solutions providing transformer 
backup protection using both one-sided [6] and two-sided 
measurements [7] based on simulation data analysis. 
Like [2-5], the studies in [6] and [7] suggest dividing the 
N-dimensional feature space into several setting planes. 
Also, the study discussed in [6] proposes a criterion for 
assessment of a feature space, which is based on the ratio 
of average Euclidean distance between the representatives 
of one class to the distance between representatives of 
different classes. The problem of feature space assessment 
was further developed in [8] where apart from the method 
that estimates the separability of states via metric functions, 
the authors describe the methods based on “separating 
functions” that explicitly define the border surface (linear 
or non-linear) between different classes in the feature 
space.

Different ways of fault detection in power systems 
based on machine learning methods are analyzed in various 
research papers. In [9], the authors compare the efficiency 
of classification algorithms such as Naïve Bayes’ Classifier, 

 
Fig. 3. The principle of combining the distance protection zones 
with the selection elements.

 
Fig. 4. Separating border in a two-dimensional space.

 

Element α-states β-states 

SVM T1 Faults on Т1 
Faults behind Т1; Faults on ω2 outside 
ω2 zone 1; Faults on ω3 outside ω3 zone 
1; Normal states. 

SVM ω2 Faults on ω2 Faults behind Т1; Faults on ω3 outside 
ω3 zone 1; Normal states. 

SVM ω3 Faults on ω3 
Faults behind Т1; Faults on ω2 outside 
ω2 zone 1; Normal states. 

 
 

Table II α- and β-states for the designed elements.
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Radial Basis Function Classifier, Bagging and Boosting in 
the problem of identifying the type of a fault on a power 
line. In [10], the focus is on the relay protection based on 
the support vector machines in distributed networks with 
distributed generation. The authors used a feature space 
consisting of active and reactive power flows.

III. The application of support vector machines

In its simplest form, the support vector machine (SVM) 
technique is used for binary classification. The learning 
procedure assumes setting a hyperplane in the feature 
space to divide the training set elements related to different 
classes (denote the classes by α and β, respectively). 
Thus, the feature space is divided into an operation 
region and a non-operation region. The procedure for the 
state classification is to determine on which side of the 
hyperplane the considered state is.

The training set is said to be linearly separable if a 
hyperplane can be drawn so that all the points belonging 
to class α will lie on one side of it while all the points 

 Fig. 5. Training set and separating border of the “SVM T1” 
element.

Fig. 6. Distribution of α- and β-states of the “SVM ω2” element 
on the impedance plane.

 

 
Fig. 7. Separating plane of the “SVM ω2” element in a three 
dimensional space.
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belonging to class β will be on the other side. This condition 
can be formalized as follows:

Let there be a training set x1, …, xN consisting of N 
vectors in a multi-dimensional space. For each element of 
the training set there is a class tag y1, …, yN so that yi = 
1 if the ith element belongs to the class α and yi = –1 if 
the ith element belongs to the class β. Then the hyperplane 

 T 0b× + =w x  separates the classes if the condition is met:

 ( )T1, , ,  0.i ii N y b" Î … × × + >w x (4)
An example of a separating hyperplane is shown in 

Fig. 4. Sum of distances between the plane and the closest 
representatives of both classes is called “margin”. It is 
obvious that the most optimal hyperplane is the one that 
gives maximal margin provided that the condition (4) is 
met. It is proven [11] that equation of such a hyperplane 
can be obtained by finding the constrained minimum of the 
system of expressions:
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In most cases, however, the training set is not linearly 
separable, which means that there is no hyperplane 
satisfying the system of inequalities (4). In this case, the 
SVM allows misclassification of some elements from the 
training set but introduces a penalty for it. The optimization 
problem takes the following form:
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where  is a slack variable describing the classification 
error of the ith element of the training set; С is a 
coefficient defining penalty for the misclassification.

The coefficient С defines what will be more important 
for the classification algorithm: margin maximization or 
classification error minimization.

In practice, instead of the primal SVM problem (6), the 
dual form is solved, which provides the same answer but 
can be solved with faster numerical methods. Solving the 
dual SVM problem involves optimization of the variables 
λ1, …, λn (expression (7)), i.e. Lagrange multipliers. The 
dual form is derived from the primal form [12] and is 
written as follows:
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The quadratic programming problem (7) can be solved 
via one of the known methods [e.g. 13].

Having obtained optimal Lagrange multipliers λ1, …, 
λn – by solving problem (7), one can restore separating 
hyperplane equation (8).
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where s is an index of a vector such that 0 < λs < C.
The classification algorithm can be expressed in terms of 
the coefficients λ1, …, λn as follows:
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Another way to classify the linearly inseparable data 
is to use a kernel trick. Its idea is to transform the original 
feature space X to a higher dimensional space H via a 
special kernel function H = φ(X) in which the training set 
would be linearly separable. With such an approach, the 
optimization problem takes the form (10) and a new object 
is classified according to expression (11).
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The most widespread kernel functions used in practice 
are the polynomial (12) and the radial (13) ones.

 ( , ) ( 1)di j i jj = × +x x x x ; (12)
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where d is the degree of the polynomial; γ is a regulation 
parameter.

It is worth noting that for the classification according 
to (9) it is sufficient to summate only those i, for which 
λi ≠ 0, i.e. only the support vectors whose quantity is much 
smaller than the size of the whole training set.

IV. Design of the svm-based state classifiers for 
relay protection  

The most important part of designing multi-parameter 
relay protection is the identification of states to be detected 
by the algorithm (α-states) and also the states (β-states), 
at which the algorithm operation must be excluded. The 
composition and size of the training set will depend on this 
decision. Usually, α-states are specific types of faults inside 
the reach zone, whereas β-states are operating conditions 
and faults outside the reach zone where tripping can lead 
to non-selective behavior of the protection.
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Using the above-described Monte-Carlo-based 
approach, we will form training and testing sets for the 
auxiliary elements to be designed.

The “SVM  T1” element (Fig. 3), which has to detect 
faults in the power transformer, should use simulation 
results of faults at T1 as α-states. The β-states should consist 
of the following scenarios:
•	 Faults behind Т1;
•	 Faults on the part of line ω2 outside the reach of the 

distance protection first zone of line ω2;
•	 Faults on the part of line ω3 outside the reach of the 

distance protection first zone of line ω3;
•	 Normal states.

Note that the behavior of the “SVM T1” element in the 
situations that are not included in the training set is not 
pre-defined. For example, this element can operate in case 
of a fault at the beginning of line ω3, but this is permissible 
because it will not lead to non-selective switching off.
Similarly, we can identify α- and β-states for the "SVM ω2" 
and "SVM ω3" elements (Table II). 

Location of α- and β-states of the “SVM T1” element 
in the feature space formed by the impedance plane is 
shown in Fig. 5. An analysis of the Figure shows that in the 
given feature space, the regions of the states are linearly 
inseparable. Thus, the efficient classification via SVM is 
possible only by using a kernel function. Let us implement 
the procedure for learning the given training set with the aid 
of the polynomial kernel with a degree of 6. The obtained 
separating border is also shown in Fig. 5.

The distance protection combined with the implemented 
“SVM T1” element detects 95% of phase-to-phase faults 
in the transformer primary winding and excludes only 
the faults that are close to the transformer neutral and 
practically do not differ from the normal state.
Location of α- and β-states of the “SVM ω2” element in the 
same feature space is shown in Fig. 6.

As evidenced by analysis, Fig. 6, unlike Fig. 5, has 
overlays of α- and β-states, which makes it impossible to 
find a border that would accurately separate the studied and 
alternative states. One of the possible options to improve 
accuracy is to increase the dimension of the feature 
space. The rms value of the line ω2 current measured at 
the substation, where the designed protection should be 
installed, can be added to the feature space as the third 
dimension. In the resulting three-dimensional feature 
space, it becomes possible to place a separating plane 
providing unmistakable differentiation of the considered 
states (Fig. 7).

Figure 8 indicates a distribution of α- and β-states on 
the distance protection two-dimensional impedance plane 
for the “SVM ω3” element designed to detect faults on line 
ω3. In terms of the classification, the case in Fig. 8 is the 
simplest because the accurate classification of states can be 
performed in the two-dimensional feature space without a 
specific kernel function. However, the use of a polynomial 

kernel function, for example, is preferable, since in this 
case, the separating border settles further from the complex 
values of both α- and β-states.

The use of a more complex kernel function guarantees 
a higher probability of appropriate work of the classifier in 
situations where the observed complex values go slightly 
beyond the regions formed by the simulation results. 

Thus, the results presented in the paper allow us to 
conclude that the designed SVM-based auxiliary elements 
for distance protection identify the faulted components of 
the grid almost unmistakably and provide selectivity of the 
distance protection in the backup zone. 

It is worth noting that the obtained separating borders 
in the feature spaces and their discriminative ability are 
characteristic only of a specific scheme and operating 
situation of a particular power grid. Therefore, the use of 
the SVM method in relay protection is limited despite its 
obvious benefits.

V. Conclusion

1.	 The advent of digital technologies and intelligent 
algorithms in the energy industry opens up new 
opportunities not only for the improvement of relay 
protection hardware but also for the development of 
its design principles. Simulation modeling becomes 
a powerful tool for the research into power system 
operation and the development of new relay protection 
algorithms.

2.	 The SVM application to relay protection problems 
is promising in both the formation of new protection 
algorithms and the use of SVM as an additional tool 
for increasing selectivity and speed of existing types 
of protection. An increase in the dimension of feature 
space to identify the electrical grid states significantly 
increases the probability of correct classification. 

3.	 The proposed approach to the state recognition based 
on electrical grid simulation modeling and SVM allows 
the decision rule of protection algorithm to be adapted 
to an arbitrary grid configuration. It may be particularly 
appropriate for the grids of a complex configuration 
with the state parameters influenced by many factors 
(circuit breakers states, load power, and others), which 
cannot be handled manually.

4.	 Despite the high recognition ability of machine learning 
algorithms in general and the SVM in particular their 
application in relay protection is limited for several 
reasons:

•	 Trained algorithms are only applicable to a particular 
power grid section;

•	 Simulation modeling is required for setting the 
algorithm parameters;

•	 The use of a feature space with more than two dimensions 
makes it difficult to visualize the simulated states and 
the operation boundary obtained by implementing the 
algorithm.
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