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Abstract — Steady-state equations play a fundamental 
role in the theory of power systems and computation 
practice. These equations are directly or mediately used 
almost in all areas of the power system state theory, 
constituting its basis. This two-part study deals with a 
geometrical interpretation of steady-state solutions in a 
power space. Part I considers steady states of the power 
system as a surface in the power space. A power flow 
feasibility region is shown to be widely used in power 
system theories. This region is a projection of this surface 
along the axis of a slack bus active power onto a subspace 
of other buses power. The findings have revealed that 
the obtained power flow feasibility regions, as well as 
marginal states of the power system, depend on a slack 
bus location. Part II is devoted to an analytical study of 
the power surface of power system steady states.

Index Terms: feasibility region, Jacobian, marginal 
state, power flow, power surface, power system, slack 
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steady-state equations are essential since they provide 
qualitative insights [3]. 

Initially, a steady-state solution space was examined for 
lossless power systems with PV-buses only. The authors of 
[4] indicate that the steady-state solution space is bounded 
by the power flow feasibility region in the parametric 
space; and that a steady-state solution may be non-unique, 
i.e., there can be several solutions, in some of which power 
circulates in one or more loops of the network. Using 
Hamiltonian formulation, the authors of [5] show that stable 
power flows are not necessarily unique either. A study of 
topological properties of the stable region [6] reveals that 
in such cases, the stable region is disconnected. The author 
of [7] uses Hamiltonian formulation to investigate the 
number of steady-state solutions, topological properties of 
stationary points, and features of a stable region for a 3-bus 
radial system.

Explorations of steady-state solution space for lossy 
power systems were usually confined to computational 
studies. The author of [8] has studied a limit on the 
existence of a steady-state solution of the 3-bus radial 
power system with PV-buses only. The influence the 
parameters of the system lines have on the power flow 
feasibility region was investigated in [9]. A computational 
study of the power flow feasibility region for a 3-bus radial 
power system with PV-buses only is presented in [10]. 
The author of [11] proposes using L-functions to study 
the power flow feasibility region, analytically shows, and 
computationally confirms that the power flow feasibility 
region can have a hole through it. An analytical framework 
is developed in [12] to describe the convexity properties of 
the power flow feasibility boundary in parametric space. 
In [13], the researchers propose a contour approach to the 
global analysis of power system performance, and in [14], 
a monogram method is developed to explore a solution 
boundary of the power flow problem. 

It is noteworthy that the cited scientific studies, as well 
as others, tend to use geometrical images only to represent 

I. IntroductIon

Steady-state calculations play a crucial part in the 
analysis, planning, and control of power systems. The 
majority of research papers published thus far focus on 
the development of numerical methods, which are fairly 
completely reviewed in [1] and [2]. At the same time, 
an analytical investigation and understanding of the 
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numerical results [15] or to explain the proposed approaches 
[17], [18], [16]. At the same time, the development of 
the bifurcation theory [19], singularity theory [20], and 
catastrophe theory [21], [22] shows that the geometric 
consideration provides qualitatively new results. 

The objective of the present paper is to propose a 
geometric interpretation of a set of all the solutions to 
steady-state equations in a power space. The rest of the 
paper is organized as follows. Section II presents an analysis 
of specific properties of steady-state equations. Section III 
proposes and considers the geometric interpretation of the 
steady-state solutions, i.e., a power surface, and reveals 
its relation to the feasibility regions of power flow and 
marginal states of power systems. Section IV discusses the 
causes of the hole inside a power flow feasibility region. 
Section V geometrically justifies the slack bus application 
in steady-state calculations. Section VI presents the 
conclusions. 

II. SpecIfIc  propertIeS of a Steady-State Model

There are several steady-state models, each of which 
is based on the Kirchhoff laws, has certain advantages and 
shortcomings, and can be obtained from another one by a 
mathematical transformation. Therefore, qualitative results 
and conclusions obtained for the model of interest remain 
valid for all other steady-state models. Consider the nodal 
steady-state equations in polar coordinates:
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where Pk, Qk, δk, Vk are active and reactive power, the 
voltage angle and magnitude at bus k, respectively; 
Ykm = Gkm + jBkm is an element of the bus admittance 
matrix; αkm = – arctg(Gkm / Bkm) is a loss angle; δkm = δk – δm.

The steady-state calculation involves solving the 
set of nonlinear simultaneous equations (1), under the 
assumption that the system parameters, i.e., bus admittance 
matrix elements, are known, and a steady state at each bus 
is determined by four parameters (variables) – Pk, Qk, 
δk, and Vk. According to (1), each bus has two balance 
equations for active and reactive power. Therefore, to 
obtain a solution, two of four variables Pk, Qk, δk, Vk, are to 
be specified at each bus. Therefore, the system of nonlinear 
equations (1) can be summed up as follows:

   Δ ( , ) 0F X Y = , (2)
where ΔF(X,Y), and X, Y, are the vector of power 
mismatches and the vectors of dependent and independent 
(given) variables, respectively. Mathematically, there is no 
special way to determine the dependent and independent 
variables. Only the number of the dependent variables is 
given. In terms of the steady-state solution, the independent 
variables are those that can be controlled [2], for example, 
power injections and voltage magnitudes at the generation 
buses with automatic excitation control. Buses voltage are 
dependent variables obtained by solving (2).

Solving the system of nonlinear equations (2) can be 
considered as mapping the independent variables into a 
space of dependent variables X = X(Y) [23]. According to 
the implicit function theorem [20], the necessary condition 
for the existence of such a map (as well as the solution 
existence) is the non-singularity of a matrix of first partial 
derivatives of the nonlinear equations set with respect to 
dependent variables [∂ΔF/∂X].

Consider a full matrix of first partial derivatives 
(Jacobian) of the nodal steady states equations with respect 
to the voltage angles and magnitudes:

      
 [ ]F

δ
δ

P P V
J

Q Q V
¶D ¶ ¶D ¶

=
¶D ¶ ¶D ¶ , 

(3)

where

 
cos (δ α ), ;

cos (δ α ) , ;δ

k m km km km

k m km km kmkm
m k

V V Y k mP
V V Y k m

¹

ì- - ¹¶D ïæ ö = íç ÷ - =¶è ø ïî
å

 
sin(δ α ) , ;

2 G sin(δ α ) , ;
k km km km

k kk m km km kmkm
m k

V Y k mP
V V Y k mV

¹

ì - ¹¶D ïæ ö = íç ÷ + - =¶è ø ïî
å  

sin(δ α ) , ;

2 G sin(δ α ) , ;
k km km km

k kk m km km kmkm
m k

V Y k mP
V V Y k mV

¹

ì - ¹¶D ïæ ö = íç ÷ + - =¶è ø ïî
å

 
sin (δ α ) , ;

sin (δ α ) , ;δ

k m km km km

k m km km kmkm
m k

V V Y k mQ
V V Y k m

¹

ì- - ¹¶D ïæ ö = íç ÷ - =¶è ø ïî
å

 

(4)

 
cos (δ α ) , ;

2 cos (δ α ) , .
k km km km

k kk m km km kmkm
m k

V Y k mQ
V B V Y k mV

¹

ì- - ¹¶D ïæ ö = íç ÷ - - =¶è ø ïî
å  

cos (δ α ) , ;

2 cos (δ α ) , .
k km km km

k kk m km km kmkm
m k

V Y k mQ
V B V Y k mV

¹

ì- - ¹¶D ïæ ö = íç ÷ - - =¶è ø ïî
å

Equations (3)-(4) show that the diagonal elements of 
[∂ΔP/∂δ] and [∂ΔQ/∂δ] are equal to the sum of the non-
diagonal row elements with an opposite sign. Therefore 
[∂ΔP/∂δ] e = 0, [∂ΔQ/∂δ] e = 0, where e is the vector of 
all ones. Hence the full Jacobian [JF] will be singular since 
[JF] [eT, 0T]T =  [0T, 0T]T.

This property of the full Jacobian (3) is a direct 
consequence of (1). Changes in every voltage angle by 
the same value does not influence its left-hand and right-
hand sides. Therefore, system (1) has an infinite number 
of solutions. To specify a solution, it is necessary to set 
a reference point, i.e., the voltage angle of a bus should 
be considered as known, i.e., this voltage angle must be 
moved from dependent variables to independent ones. Such 
a bus is called the angle reference bus. Since the number of 
dependent variables is reduced by one, mathematically, the 
initial number of dependent variables should be restored. 
Due to the power system-specific features, the active 
power of a bus is assigned as a new dependent variable. 
This bus balances active power in the whole power system 
and is called a slack bus. The reference bus may be chosen 
arbitrarily. The slack bus is chosen based on the specific 
features of a power system.

In general, two other sub-matrices [∂ΔP/∂V] and 
[∂ΔQ/∂V] of the full Jacobian are not singular. However, 
if there are no shunts, transformer tap ratios, and phase 
shifters, their diagonal elements at the point of "flat start" 
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are also equal to the sum of non-diagonal row elements 
with opposite sign, i.e., [∂ΔP/∂V] e = 0, [∂ΔQ/∂V] e = 0. 
In this case, [JF] [0T, eT]T = [0T, 0T]T and a null-space 
dimension of the full Jacobian will be equal to two. The 
use of the reference and slack buses reduces the null-space 
dimension of the full Jacobian by one, but the Jacobian 
remains singular. In most cases, voltage magnitudes 
are not equal to the «flat start» values; therefore, sub-
matrices [∂ΔP/∂V] and [∂ΔQ/∂V] are not singular. They 
are, however, ill-conditioned, and the resulting solution 
is very sensitive to reactive power variation. As a result, 
it is almost impossible to set the reactive power of buses 
so that the resulting steady states correspond to the power 
system operating condition [24]. Therefore, it is necessary 
to fix the voltage magnitude at one of the buses, i.e., to 
make it an independent variable. As in the case of fixing 
voltage angle, the reactive power at one of the buses is 
assigned as a new dependent variable. Therefore, this 
bus becomes the bus balancing reactive power. The slack 
bus balances both active and reactive power (Vδ-bus). 
Generator buses equipped with automated excitation 
control balance reactive power as well. These buses keep 
voltage magnitudes constant by regulating reactive power 
within given ranges (PV-buses).

With all the above things considered, the matrix of first 
partial derivatives of steady-state equations with respect 
to dependent variables can have the following form:
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(6)

is the standard power flow Jacobian; [E] and [0] are 
the identity and zero sub-matrices of respective sizes, 
and index b is used for the slack bus. According to (5) 
det [J] = det [JPF] and non-singularity of power flow 
Jacobian, (6) ensures non-singularity of matrix (5).

Formally, to solve the system of nonlinear equations (1) 
by the Newton method, the system of linearized equations 
with matrix (5) is to be solved. However, the linearized 
equations using [JPF] do not depend on other equations and 
are solved separately. All the other dependent variables, 
e.g., the power at slack bus and reactive power at PV-
buses, are determined by (1) with ordinary substitution of 
voltage angles and magnitudes.

The active and reactive power of the corresponding 
buses is included in (1) additionally. Excluding technical 
limitations, system (1) will always be consistent with any 
voltage angles and magnitudes, if the power at buses is 
obtained directly using (1). Therefore, a marginal state of 

(a) (b) 

(c) (d) 
 Fig. 1. Power surface of a 3-bus system (a) and its projections onto coordinate planes (b)-(d).
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a power system is a steady state where small deviations 
of independent variables in an unfavorable direction lead 
to inconsistency of system (1), i.e., it cannot be solved 
with respect to dependent variables. The implicit function 
theorem asserts that if Jacobian (5) at point X0, Y0 is not 
singular, then for each Y close enough to Y0 there is only 
one solution X = X(Y), which in turn is the solution to the 
nonlinear nodal steady-state equations ΔF(X(Y),Y) = 0. 
Therefore, corollaries of the implicit function theorem are: 
firstly, a necessary condition (criterion) for the marginal 
states is the singularity of (5)-(6) [25]; secondly, another 
necessary condition is the existence of close alternative 
solutions nearby the marginal state [20]. According to 
(5)-(6), the Jacobian depends on the set of dependent and 
independent variables of the steady-state model. Therefore, 
slack bus location influences the power flow Jacobian and 
MS [26]. 

It is necessary to note an important property of the 
power flow Jacobian. According to the Sard theorem, a set 
of non-regular values of variables, i.e., when the Jacobian is 
singular, has measure zero [23]. In terms of the probability 
theory, it means that the probability of such events is equal 
to zero. The complement for every set of measure zero is 
dense everywhere, i.e., the set of regular values has a full 
measure. Therefore, each point in the space of variables is 
arbitrarily close to some regular value of the map. On the 
one hand, the Sard theorem guarantees the impossibility 
of the practical existence of a normal steady state having 
the singular Jacobian, i.e., makes the necessary condition 
of marginal state the sufficient one. On the other hand, it 
asserts that the obtained solutions are only approximations 
of actual marginal states. Mathematicians seldom apply 
the Sard theorem. However, it is a very powerful and 
useful mathematical tool for those who elaborate or apply 
computing models of power systems. For example, the 
theorem allows explaining the operability of the damped 
Newton method when the steady-state equations have no 

real solution. It is known that in this case, the iteration 
process of the damped Newton method converges to 
a marginal state with a «singular» Jacobian [27], [28]. 
Theoretically, it is impossible to solve a system of linear 
equations with a singular matrix. However, this is done 
by the damped Newton method [2]. It confirms that in 
computing models, the power flow Jacobian is not singular, 
although it may be ill-conditioned. In the damped Newton 
method, an optimal multiplier considerably improves the 
condition number of the problem to be solved.

III. power Surface

Consideration of solving the steady-state equations 
as mapping of independent variables onto the space of 
dependent variables Y → X allows obtaining an interesting 
and important geometrical interpretation of steady-
state equations. Since the slack bus active power Pb is a 
dependent variable, it is a function of the active power of 
all other buses and the reactive power of the PQ-buses. 
Its graph Pb = Pb (P,Q) is a surface in the power space. 
The power surface defines the set of the power system 
steady states, including hypothetical unstable ones, 
for given system parameters [29]. There are no power 
system steady states outside the power surface for the 
specified system parameters and independent variables. 
Any point of the power surface corresponds to a steady 
state and its coordinates, i.e., the power at the buses in 
this steady state. As an example, Fig. 1 shows the power 
surface of a 3-bus power system with all PV-buses 
and its projections onto the corresponding coordinate 
planes. Parameters of this power system are as follows:  

V1 = V2 = V3 = 110 kV; Z12 = Z13 = Z23 = 20 + j40 Ω.
The power system state analysis tends to use the 

concept of the power flow feasibility region. As the power 
surface determines all the power system steady states for 
the given system parameters, its projection along the axis 
of the slack bus active power onto a subspace of power of 

(a) 
  

(b) 

  Fig. 2. Power surface (a) and power flow feasibility region (b) of 3-bus lossless system
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all other buses is nothing else but the power flow feasibility 
region and boundary of this projection represents a 
marginal state surface in the power subspace of the buses. 
Thus, projections of the power surface presented in Fig. 
1 (b), (c), or (d) are power flow feasibility regions when 
buses 3, 2, or 1 are used as slack buses, respectively. Since 
the power surface is normally not plane, its projection, i.e., 
the power flow feasibility region, and its boundary, i.e., the 
marginal state surface, will depend on the choice of the 
axis along which it is projected, i.e., they depend on the 
slack bus choice. 

The power surface of a lossless power system is 
plane since there are no active power losses and power 
at buses satisfies the equation ∑Pk = 0. As an example, 
Fig. 2(a) shows the power surface of a 3-bus lossless 
power system (Z12 = Z13 = Z23 = 40 Ω) with PV-buses, 
and Fig. 2(b) indicates its projection onto the coordinate 
plane. This surface is a plane ellipsoid. The boundary of 
the plane surface corresponds to the marginal state, and 
only its projection along the axis of the active power of 
any slack bus onto the subspace of power at other buses 
is the boundary of the power flow feasibility region of the 
lossless power system. Therefore, the marginal states of 
lossless power systems do not depend on the choice of a 
slack bus.

It is known that the set of nonlinear steady-state 
equations for specified independent variables may have 
several solutions, some of which are stable while others are 
not. If the transmission lines of the power system are not 
purely inductive, then the number of solutions corresponds 
to the number of crossings of the power surface by the 
vector of the given buses’ power directed in parallel to the 
axis of the slack bus active power. When there is purely 
inductive reactance, then even one power surface point 
may correspond to several solutions.

Thus, each point of the plane power surface of 
the 3-bus lossless power system represented in Fig. 2 
corresponds to one solution on the boundary of the power 
surface; two solutions inside the surface but outside the 
region of triangles; and two additional solutions inside 
each triangle region, but only one of these solutions 
is stable. In the area of crossing triangles, each power 
surface point corresponds to six solutions, including the 
origin [4], i.e., when power injections of all the buses 
are equal to zero. Four solutions, including a stable 
one, correspond to zero active power flows in the lines. 
The other two solutions correspond to the circulation 
of active power around the loop (even when all the 
active power injections are zero), giving the sum of the 
branch-angles along the loop equal to ± 360º, rather 
than zero as in an ordinary solution. According to [5] 
and [6], interconnected power systems may have stable 
solutions, where active power circulates in one or more 
loops. In these cases, losses are much larger than those 
for ordinary solution.

IV. power flow feaSIbIlIty regIon wIth a hole

The geometrical consideration of the power system’s 
steady states as the power surface allows highlighting 
the reasons why holes can occur inside the power flow 
feasibility region [11]. This can be done by considering 
the power surface of a 2-bus system with PV-buses 
presented in Fig. 3. This «surface» is a hollow ellipse in 
the two-dimensional space of bus power [32]
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where G + jB is the complex admittance of the line 
connecting these two buses. 
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Fig. 3. Power ellipse of 2-bus power system  Fig. 4. Power flow feasibility region of 3-bus radial power system 
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The coordinates of the center of the power ellipse are  
( 2

1V G , 2
2V G ) and its principal axes are rotated by an angle 

of 45º relative to the coordinate axes. The length of one of 
the principal axes is 1 22 BVV , the length of the other is 

1 22 GVV . The power ellipse defines all the steady states 
of the given 2-bus system. Any ellipse point corresponds to 
a particular steady state, and its coordinates are steady-state 
power at the buses. Outside and inside this hollow ellipse, 
there are no steady states. Therefore, a set of feasible power 
of the buses for the 2-bus system is non-convex. It is one 
of the principal prerequisites for the holes to appear inside 
power flow feasibility regions. 

Note that power at all buses is equal in rights for the 
power surface, and a slack bus is not required. The need 
to use the slack bus arises in the case of steady-state 
calculation. If bus 2 is used as a slack bus to calculate 
the steady state for the 2-bus system, the thick line  
[ 1

AP , 1
BP ] in Fig. 3, which is the projection of the power 

ellipse onto the active power axis of bus 1, will be the 
power flow feasibility region. In this case, points A and 
B correspond to two marginal states. On the other hand, 
if bus 1 is a slack bus, the thick line [  2

СP , 2
DP ] in Fig. 3, 

which is the projection of the power ellipse onto the active 
power axis of bus 2, will be another power flow feasibility 
region, where points C and D will correspond to two other 
marginal states.

The power flow feasibility region of the 2-bus power 
system is a straight-line segment and, therefore, has no 
holes. However, a hole in the power flow feasibility region 
may arise already in the case of a 3-bus system. To see it, 
add PV-bus 3 connecting the 2-bus system to bus 1, for 
example, by the inductive impedance Z13 = jX13, and assign 
bus 3 as a slack bus. In this radial 3-bus power system, all 
buses are PV-buses, and the active power of bus 3 is directly 
transported to bus 1 without power losses. Therefore, using 
(7), the power surface of this system can be determined by 
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where P3 = P31 = (V1V3/X13) sin δ31. 
Expression (8) is the equation of a surface in a three-

dimensional space, and its projection onto the coordinate 
plane P1×P2 represents a power flow feasibility region for 
this power system when bus 3 is used as a slack bus (Fig. 
4). Comparison of (8) with (7) reveals that the ellipse (8) 
for particular P3 is the same ellipse (7) as in Fig. 3, but 
displaced horizontally to the left by the value of power P3 
in the case where bus 1 receives power from slack bus 3, 

(a) (b) 

(c) (d) 
 

(a) (b) 

(c) (d) 
 Fig. 5. Power surface of a 3-bus radial system (a) and power flow feasibility regions when the slack bus is bus 3 (b), bus 1 (c), or bus 2 (d).
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otherwise, to the right. Hence, (8) can be considered as 
an infinite set of ellipses on the coordinate plane P1×P2. 
Therefore, the power flow feasibility region of this power 
system is the area filled with ellipses (8). Its boundaries, 
i.e., marginal states, represent the envelopes of the infinite 
set of ellipses (8).

The maximum and minimum values of active power, 
which bus 1 can receive from slack bus 3, are determined 
by the expression max in

13 1 3 13 13
mP VV X P= = � . Therefore, the 

external boundary of the power flow feasibility region is 
the boundary of the convex hull of two outermost ellipses 
displaced horizontally to the left and to the right by the 
power value max

13 1 3 13P VV X= with respect to the central 
ellipse (7), i.e., the closed curve A-B-C-D-A in Fig. 4. 
The «hole» through the power flow feasibility region of 
this power system is the area of intersection of these two 
outermost ellipses, i.e., the region bounded by two arcs 
EF of these outermost ellipses. It is interesting to notice 
that the power flow feasibility region of this power system 
will not have a «hole» if any other bus is assigned as a 
slack bus. For example, Fig. 5 demonstrates a power 
surface of the 3-bus radial power system with parameters 
V1 = V2 = V3 = 110 kV, Z12 = 20 + j40, Z13 = j70 (Ω) and its 
power flow feasibility regions for different assigned slack 
buses.

According to Fig. 5(a), the power surface of the power 
system represents a hollow ellipsoidal cylinder. The 
projection of the power surface along the active power 
axis of bus 3 onto the coordinate plane P1×P2, presented 
in Fig 5(b), has a form similar to that shown in Fig. 4 
and represents a power flow feasibility region when bus 
3 is used as a slack bus. If bus 1 is assigned as a slack 
bus, it corresponds to splitting the power system into two 
subsystems, whose steady states do not depend on each 
other. Steady states of the first subsystem are determined 
only by parameters of bus 2, of the second subsystem – 
by parameters of bus 3. It follows that the power flow 
feasibility region will be a filled rectangle, with the length 

of its sides determined by the maximum active power 
which bus 2 or bus 3, respectively, can withdraw from the 
network and inject into it, as shown in Fig. 5(c). If bus 2 is 
assigned as a slack bus, the power flow feasibility region 
will be a filled parallelogram, Fig. 5(d).

If to reduce the inductive impedance Z13, for example, 
to set Z13 = j45 Ω, i.e., to increase the electric connection 
of bus 1 with slack bus 3, the power surface will also 
be represented as the hollow ellipsoidal cylinder (Fig. 
6(a)), but projections of two outermost ellipses onto the 
coordinate plane P1×P2 will not be crossed and the «hole» 
inside the power flow feasibility region will disappear, as 
shown in Fig. 6(b). The use of other slack buses does not 
qualitatively change power flow feasibility regions, and 
they will be similar to those presented in Figs. 5(c), (d).

V. Slack buS

The power surface allows a geometrical interpretation 
of the necessity of using the slack bus to calculate the 
steady state, i.e., the active power of the bus is not specified 
and regarded as unknown. Usually, such necessity is 
explained by the fact [30] that system losses are not known 
precisely before steady-state calculations. Therefore, it is 
impossible to specify power at all the buses precisely to 
provide consistency of the steady-state equations, i.e., their 
solvability. However, such consideration cannot explain 
the impossibility of calculating the steady state of a lossless 
power system with all PV-buses without using the slack 
bus. In a lossless power system, active power losses are 
equal to zero, therefore, it is not difficult to specify active 
power at all buses to provide consistency of the steady-
state equations. However, even in this case, the steady-
state calculation is impossible without assigning a slack 
bus. The power surface allows explaining such a need.

Each power system steady state corresponds to a certain 
point on the power surface and vice versa. The power 
surface is a map of the whole set of power system steady 
states, including all hypothetical (unstable) power system 
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Fig. 6. Power surface of a 3-bus radial system (a) and power flow feasibility region obtained by using slack bus 3 (b)
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steady states, into the power space of buses. Outside and 
inside the power surface, there are no steady states. Like any 
surface, the power surface has a measure zero in the space 
of power at buses [31]. In terms of the probability theory, 
it means that a chance to specify the coordinates of a point 
on the power surface (the power of buses), disregarding 
their functional dependence so that they could satisfy the 
equation of the surface (steady state), is equal to zero. 
Hence, to obtain the coordinates of a point on the power 
surface (to solve the steady-state equations), it is necessary 
to use a coordinate of this point (active power of the slack 
bus) as a dependent variable. Therefore, all computational 
models that use steady-state equations always apply the 
slack bus explicitly or implicitly to calculate not only the 
steady state but also the optimal power flow, to estimate the 
power system state, and assess steady-state stability, and 
others [32]-[36].

VI. concluSIon

The study of steady-state equations reveals that a set 
of the power system steady states can be geometrically 
represented as a surface in the space of active power of 
buses and reactive power of PQ buses referred to as the 
power surface of the power system.

The findings indicate that the power flow feasibility 
region in the power space of buses, which is widely used in 
the theory and practice of power systems, is nothing but the 
projection of the power surface along the axis of the slack 
bus active power onto the subspace of all other specified 
power of buses, and the boundary of this projection is the 
surface of marginal states of the power system in the space 
of specified power of buses. Since the power surface is not 
plane, its projection, i.e., the power flow feasibility region, 
and its boundaries, i.e., the surface of marginal states, 
will depend on the choice of the axis along which it is 
projected, i.e., on the slack bus choice. The lossless power 
system power surface is plane, consequently, its power 
flow feasibility region and the surface of marginal states 
do not depend on the choice of slack bus.

The power surface allows visual interpretation of how 
«holes» through the power flow feasibility region appear 
and disappear in the case where the slack bus is changed.

Consideration of the set of all possible steady states of 
the power system as the power surface allows making use 
of the differential geometry and singularity theory for the 
further research of specificity and structure of power flow 
feasibility regions and marginal states.
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