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Abstract — Steady-state equations play a fundamental
role in the theory of power systems and computation
practice. These equations are directly or mediately used
almost in all areas of the power system state theory,
constituting its basis. This two-part study deals with a
geometrical interpretation of steady-state solutions in a
power space. Part I considers steady states of the power
system as a surface in the power space. A power flow
feasibility region is shown to be widely used in power
system theories. This region is a projection of this surface
along the axis of a slack bus active power onto a subspace
of other buses power. The findings have revealed that
the obtained power flow feasibility regions, as well as
marginal states of the power system, depend on a slack
bus location. Part II is devoted to an analytical study of
the power surface of power system steady states.

Index Terms: feasibility region, Jacobian, marginal
state, power flow, power surface, power system, slack
bus, steady state.

1. INTRODUCTION

STEADY-state calculations play a crucial part in the
analysis, planning, and control of power systems. The
majority of research papers published thus far focus on
the development of numerical methods, which are fairly
completely reviewed in [1] and [2]. At the same time,
an analytical investigation and understanding of the
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steady-state equations are essential since they provide
qualitative insights [3].

Initially, a steady-state solution space was examined for
lossless power systems with PV-buses only. The authors of
[4] indicate that the steady-state solution space is bounded
by the power flow feasibility region in the parametric
space; and that a steady-state solution may be non-unique,
i.e., there can be several solutions, in some of which power
circulates in one or more loops of the network. Using
Hamiltonian formulation, the authors of [5] show that stable
power flows are not necessarily unique either. A study of
topological properties of the stable region [6] reveals that
in such cases, the stable region is disconnected. The author
of [7] uses Hamiltonian formulation to investigate the
number of steady-state solutions, topological properties of
stationary points, and features of a stable region for a 3-bus
radial system.

Explorations of steady-state solution space for lossy
power systems were usually confined to computational
studies. The author of [8] has studied a limit on the
existence of a steady-state solution of the 3-bus radial
power system with PJV-buses only. The influence the
parameters of the system lines have on the power flow
feasibility region was investigated in [9]. A computational
study of the power flow feasibility region for a 3-bus radial
power system with PV-buses only is presented in [10].
The author of [11] proposes using L-functions to study
the power flow feasibility region, analytically shows, and
computationally confirms that the power flow feasibility
region can have a hole through it. An analytical framework
is developed in [12] to describe the convexity properties of
the power flow feasibility boundary in parametric space.
In [13], the researchers propose a contour approach to the
global analysis of power system performance, and in [14],
a monogram method is developed to explore a solution
boundary of the power flow problem.

It is noteworthy that the cited scientific studies, as well
as others, tend to use geometrical images only to represent
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numerical results [ 15] or to explain the proposed approaches
[17], [18], [16]. At the same time, the development of
the bifurcation theory [19], singularity theory [20], and
catastrophe theory [21], [22] shows that the geometric
consideration provides qualitatively new results.

The objective of the present paper is to propose a
geometric interpretation of a set of all the solutions to
steady-state equations in a power space. The rest of the
paper is organized as follows. Section II presents an analysis
of specific properties of steady-state equations. Section III
proposes and considers the geometric interpretation of the
steady-state solutions, i.e., a power surface, and reveals
its relation to the feasibility regions of power flow and
marginal states of power systems. Section IV discusses the
causes of the hole inside a power flow feasibility region.
Section V geometrically justifies the slack bus application
in steady-state calculations. Section VI presents the
conclusions.

II. SPECIFIC PROPERTIES OF A STEADY-STATE MODEL

There are several steady-state models, each of which
is based on the Kirchhoff laws, has certain advantages and
shortcomings, and can be obtained from another one by a
mathematical transformation. Therefore, qualitative results
and conclusions obtained for the model of interest remain
valid for all other steady-state models. Consider the nodal
steady-state equations in polar coordinates:

AI)k =I)k +ZI/kV:11 Y;(m|Sin(6km _a‘km) = 0’

AQ, =0, - DV,

where P, O,, §,, V) are active and reactive power, the
voltage angle and magnitude at bus £ respectively;
= Gy, T jB,, i1s an element of the bus admittance
matrlx o, = —arctg(G,,,/B,,,) is aloss angle; §,,, = 8, —9,,.
The steady-state calculation involves solving the
set of nonlinear simultaneous equations (1), under the
assumption that the system parameters, i.c., bus admittance
matrix elements, are known, and a steady state at each bus
is determined by four parameters (variables) — P,, O,,
d;, and V,. According to (1), each bus has two balance
equations for active and reactive power. Therefore, to
obtain a solution, two of four variables P, O,, 9,, V), are to
be specified at each bus. Therefore, the system of nonlinear
equations (1) can be summed up as follows:
AF(X,Y)=0, (2)
where AF(X,Y), and X, Y, are the vector of power
mismatches and the vectors of dependent and independent
(given) variables, respectively. Mathematically, there is no
special way to determine the dependent and independent
variables. Only the number of the dependent variables is
given. In terms of the steady-state solution, the independent
variables are those that can be controlled [2], for example,
power injections and voltage magnitudes at the generation
buses with automatic excitation control. Buses voltage are
dependent variables obtained by solving (2).
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Solving the system of nonlinear equations (2) can be
considered as mapping the independent variables into a
space of dependent variables X = X(Y) [23]. According to
the implicit function theorem [20], the necessary condition
for the existence of such a map (as well as the solution
existence) is the non-singularity of a matrix of first partial
derivatives of the nonlinear equations set with respect to
dependent variables [OAF/0X].

Consider a full matrix of first partial derivatives
(Jacobian) of the nodal steady states equations with respect
to the voltage angles and magnitudes:
OAP/83 GAP/GV‘

J.|=
LV:] 0AQ/05  OAQ[OV 3)
where
AP m |COS (Skm - akm ), k * m;
( oy j ZVV | kmlcos(skm_akm)a k:m;
m#k
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Equations (3)-(4) show that the diagonal elements of
[0AP/0d] and [OAQ/O3] are equal to the sum of the non-
diagonal row elements with an opposite sign. Therefore
[OAP/Od] e = 0, [OAQ/03] e = 0, where e is the vector of
all ones. Hence the full Jacobian [J;] will be singular since
[J¢] [e", 0T]" = [07, 07]".

This property of the full Jacobian (3) is a direct
consequence of (1). Changes in every voltage angle by
the same value does not influence its left-hand and right-
hand sides. Therefore, system (1) has an infinite number
of solutions. To specify a solution, it is necessary to set
a reference point, i.e., the voltage angle of a bus should
be considered as known, i.e., this voltage angle must be
moved from dependent variables to independent ones. Such
a bus is called the angle reference bus. Since the number of
dependent variables is reduced by one, mathematically, the
initial number of dependent variables should be restored.
Due to the power system-specific features, the active
power of a bus is assigned as a new dependent variable.
This bus balances active power in the whole power system
and is called a slack bus. The reference bus may be chosen
arbitrarily. The slack bus is chosen based on the specific
features of a power system.

In general, two other sub-matrices [0AP/OV] and
[OAQ/0V] of the full Jacobian are not singular. However,
if there are no shunts, transformer tap ratios, and phase
shifters, their diagonal elements at the point of "flat start"
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are also equal to the sum of non-diagonal row elements
with opposite sign, i.e., [0AP/OV] e =0, [0AQ/OV] e = 0.
In this case, [J4] [0T, €"]T = [0, 07]T and a null-space
dimension of the full Jacobian will be equal to two. The
use of the reference and slack buses reduces the null-space
dimension of the full Jacobian by one, but the Jacobian
remains singular. In most cases, voltage magnitudes
are not equal to the «flat starty values; therefore, sub-
matrices [OAP/OV] and [OAQ/OV] are not singular. They
are, however, ill-conditioned, and the resulting solution
is very sensitive to reactive power variation. As a result,
it is almost impossible to set the reactive power of buses
so that the resulting steady states correspond to the power
system operating condition [24]. Therefore, it is necessary
to fix the voltage magnitude at one of the buses, i.c., to
make it an independent variable. As in the case of fixing
voltage angle, the reactive power at one of the buses is
assigned as a new dependent variable. Therefore, this
bus becomes the bus balancing reactive power. The slack
bus balances both active and reactive power (V9-bus).
Generator buses equipped with automated excitation
control balance reactive power as well. These buses keep
voltage magnitudes constant by regulating reactive power
within given ranges (PV-buses).

With all the above things considered, the matrix of first
partial derivatives of steady-state equations with respect
to dependent variables can have the following form:

400

(©
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PF

AP, 35 OAP, OV,
0AQ,, /66 OAQ,, /aVPQ

[/]

0 0
1 0 (5)
0 E
where
[J ]:{ OAP/0d OAP[OV,, }
P OAQ,, 05 OAQ,, [0V,

is the standard power flow Jacobian; [E] and [0] are
the identity and zero sub-matrices of respective sizes,
and index b is used for the slack bus. According to (5)
det [J] = det [Jpr] and non-singularity of power flow
Jacobian, (6) ensures non-singularity of matrix (5).

Formally, to solve the system of nonlinear equations (1)
by the Newton method, the system of linearized equations
with matrix (5) is to be solved. However, the linearized
equations using [J/,,] do not depend on other equations and
are solved separately. All the other dependent variables,
e.g., the power at slack bus and reactive power at PV-
buses, are determined by (1) with ordinary substitution of
voltage angles and magnitudes.

The active and reactive power of the corresponding
buses is included in (1) additionally. Excluding technical
limitations, system (1) will always be consistent with any
voltage angles and magnitudes, if the power at buses is
obtained directly using (1). Therefore, a marginal state of
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Fig. 1. Power surface of a 3-bus system (a) and its projections onto coordinate planes (b)-(d).
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Fig. 2. Power surface (a) and power flow feasibility region (b) of 3-bus lossless system

a power system is a steady state where small deviations
of independent variables in an unfavorable direction lead
to inconsistency of system (1), i.e., it cannot be solved
with respect to dependent variables. The implicit function
theorem asserts that if Jacobian (5) at point X, Y, is not
singular, then for each Y close enough to Y| there is only
one solution X = X(Y), which in turn is the solution to the
nonlinear nodal steady-state equations AF(X(Y),Y) = 0.
Therefore, corollaries of the implicit function theorem are:
firstly, a necessary condition (criterion) for the marginal
states is the singularity of (5)-(6) [25]; secondly, another
necessary condition is the existence of close alternative
solutions nearby the marginal state [20]. According to
(5)-(6), the Jacobian depends on the set of dependent and
independent variables of the steady-state model. Therefore,
slack bus location influences the power flow Jacobian and
MS [26].

It is necessary to note an important property of the
power flow Jacobian. According to the Sard theorem, a set
of non-regular values of variables, i.e., when the Jacobian is
singular, has measure zero [23]. In terms of the probability
theory, it means that the probability of such events is equal
to zero. The complement for every set of measure zero is
dense everywhere, i.e., the set of regular values has a full
measure. Therefore, each point in the space of variables is
arbitrarily close to some regular value of the map. On the
one hand, the Sard theorem guarantees the impossibility
of the practical existence of a normal steady state having
the singular Jacobian, i.e., makes the necessary condition
of marginal state the sufficient one. On the other hand, it
asserts that the obtained solutions are only approximations
of actual marginal states. Mathematicians seldom apply
the Sard theorem. However, it is a very powerful and
useful mathematical tool for those who elaborate or apply
computing models of power systems. For example, the
theorem allows explaining the operability of the damped
Newton method when the steady-state equations have no
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real solution. It is known that in this case, the iteration
process of the damped Newton method converges to
a marginal state with a «singular» Jacobian [27], [28].
Theoretically, it is impossible to solve a system of linear
equations with a singular matrix. However, this is done
by the damped Newton method [2]. It confirms that in
computing models, the power flow Jacobian is not singular,
although it may be ill-conditioned. In the damped Newton
method, an optimal multiplier considerably improves the
condition number of the problem to be solved.

III. POWER SURFACE

Consideration of solving the steady-state equations
as mapping of independent variables onto the space of
dependent variables ¥ — X allows obtaining an interesting
and important geometrical interpretation of steady-
state equations. Since the slack bus active power P, is a
dependent variable, it is a function of the active power of
all other buses and the reactive power of the PQO-buses.
Its graph P, = P, (P,Q) is a surface in the power space.
The power surface defines the set of the power system
steady states, including hypothetical unstable ones,
for given system parameters [29]. There are no power
system steady states outside the power surface for the
specified system parameters and independent variables.
Any point of the power surface corresponds to a steady
state and its coordinates, i.e., the power at the buses in
this steady state. As an example, Fig. 1 shows the power
surface of a 3-bus power system with all PV-buses
and its projections onto the corresponding coordinate
planes. Parameters of this power system are as follows:

Vi=V,=V,=110kV; Z,=Z,;=Z,; =20 + j40 Q.

The power system state analysis tends to use the
concept of the power flow feasibility region. As the power
surface determines all the power system steady states for
the given system parameters, its projection along the axis
of the slack bus active power onto a subspace of power of
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Fig. 3. Power ellipse of 2-bus power system

all other buses is nothing else but the power flow feasibility
region and boundary of this projection represents a
marginal state surface in the power subspace of the buses.
Thus, projections of the power surface presented in Fig.
1 (b), (c), or (d) are power flow feasibility regions when
buses 3, 2, or 1 are used as slack buses, respectively. Since
the power surface is normally not plane, its projection, i.e.,
the power flow feasibility region, and its boundary, i.e., the
marginal state surface, will depend on the choice of the
axis along which it is projected, i.e., they depend on the
slack bus choice.

The power surface of a lossless power system is
plane since there are no active power losses and power
at buses satisfies the equation Y P, = 0. As an example,
Fig. 2(a) shows the power surface of a 3-bus lossless
power system (Z,, = Z,; = Z,; = 40 Q) with PV-buses,
and Fig. 2(b) indicates its projection onto the coordinate
plane. This surface is a plane ellipsoid. The boundary of
the plane surface corresponds to the marginal state, and
only its projection along the axis of the active power of
any slack bus onto the subspace of power at other buses
is the boundary of the power flow feasibility region of the
lossless power system. Therefore, the marginal states of
lossless power systems do not depend on the choice of a
slack bus.

It is known that the set of nonlinear steady-state
equations for specified independent variables may have
several solutions, some of which are stable while others are
not. If the transmission lines of the power system are not
purely inductive, then the number of solutions corresponds
to the number of crossings of the power surface by the
vector of the given buses’ power directed in parallel to the
axis of the slack bus active power. When there is purely
inductive reactance, then even one power surface point
may correspond to several solutions.

41

Fig. 4. Power flow feasibility region of 3-bus radial power system

Thus, each point of the plane power surface of
the 3-bus lossless power system represented in Fig. 2
corresponds to one solution on the boundary of the power
surface; two solutions inside the surface but outside the
region of triangles; and two additional solutions inside
each triangle region, but only one of these solutions
is stable. In the area of crossing triangles, each power
surface point corresponds to six solutions, including the
origin [4], i.e., when power injections of all the buses
are equal to zero. Four solutions, including a stable
one, correspond to zero active power flows in the lines.
The other two solutions correspond to the circulation
of active power around the loop (even when all the
active power injections are zero), giving the sum of the
branch-angles along the loop equal to =+ 360° rather
than zero as in an ordinary solution. According to [5]
and [6], interconnected power systems may have stable
solutions, where active power circulates in one or more
loops. In these cases, losses are much larger than those
for ordinary solution.

IV. POWER FLOW FEASIBILITY REGION WITH A HOLE

The geometrical consideration of the power system’s
steady states as the power surface allows highlighting
the reasons why holes can occur inside the power flow
feasibility region [11]. This can be done by considering
the power surface of a 2-bus system with PJV-buses
presented in Fig. 3. This «surface» is a hollow ellipse in
the two-dimensional space of bus power [32]

2
] =1,(7)

| J

where G + jB is the complex admittance of the line
connecting these two buses.

R-ViG+P,-ViG
20 V,G

B-VG-P,+V}G
2VV,B
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Fig. 5. Power surface of a 3-bus radial system (a) and power flow feasibility regions when the slack bus is bus 3 (b), bus 1 (c), or bus 2 (d).

The coordinates of the center of the power ellipse are
(VG ,V;G ) and its principal axes are rotated by an angle
of 45° relative to the coordinate axes. The length of one of
the principal axes is \/EVIV2 |B| , the length of the other is
\/EVIV2 |G| . The power ellipse defines all the steady states
of the given 2-bus system. Any ellipse point corresponds to
a particular steady state, and its coordinates are steady-state
power at the buses. Outside and inside this hollow ellipse,
there are no steady states. Therefore, a set of feasible power
of the buses for the 2-bus system is non-convex. It is one
of the principal prerequisites for the holes to appear inside
power flow feasibility regions.

Note that power at all buses is equal in rights for the
power surface, and a slack bus is not required. The need
to use the slack bus arises in the case of steady-state
calculation. If bus 2 is used as a slack bus to calculate
the steady state for the 2-bus system, the thick line
[P, P"] in Fig. 3, which is the projection of the power
ellipse onto the active power axis of bus 1, will be the
power flow feasibility region. In this case, points 4 and
B correspond to two marginal states. On the other hand,
if bus 1 is a slack bus, the thick line [ 2", "] in Fig. 3,
which is the projection of the power ellipse onto the active
power axis of bus 2, will be another power flow feasibility
region, where points C and D will correspond to two other
marginal states.
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The power flow feasibility region of the 2-bus power
system is a straight-line segment and, therefore, has no
holes. However, a hole in the power flow feasibility region
may arise already in the case of a 3-bus system. To see it,
add PV-bus 3 connecting the 2-bus system to bus 1, for
example, by the inductive impedance Z,; =j.X,;, and assign
bus 3 as a slack bus. In this radial 3-bus power system, all
buses are PV-buses, and the active power of bus 3 is directly
transported to bus 1 without power losses. Therefore, using
(7), the power surface of this system can be determined by

(renegesnone).

where P;=P;, = (V,V3/X,3) sin &5,.

Expression (8) is the equation of a surface in a three-
dimensional space, and its projection onto the coordinate
plane P %P, represents a power flow feasibility region for
this power system when bus 3 is used as a slack bus (Fig.
4). Comparison of (8) with (7) reveals that the ellipse (8)
for particular P is the same ellipse (7) as in Fig. 3, but
displaced horizontally to the left by the value of power P;
in the case where bus 1 receives power from slack bus 3,

R+P-V'G+P-V;G
2WY,G

, , ®)
B+P,-V:G-P+V;G

2VV,B
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Fig. 6. Power surface of a 3-bus radial system (a) and power flow feasibility region obtained by using slack bus 3 (b)

otherwise, to the right. Hence, (8) can be considered as
an infinite set of ellipses on the coordinate plane P,xP,.
Therefore, the power flow feasibility region of this power
system is the area filled with ellipses (8). Its boundaries,
i.e., marginal states, represent the envelopes of the infinite
set of ellipses (8).

The maximum and minimum values of active power,
which bus 1 can receive from slack bus 3, are determined
by the expression By™ =V,V,/X,, = B:" . Therefore, the
external boundary of the power flow feasibility region is
the boundary of the convex hull of two outermost ellipses
displaced horizontally to the left and to the right by the
power value P3™ =VV,/X,, with respect to the central
ellipse (7), i.e., the closed curve 4-B-C-D-A in Fig. 4.
The «hole» through the power flow feasibility region of
this power system is the area of intersection of these two
outermost ellipses, i.e., the region bounded by two arcs
EF of these outermost ellipses. It is interesting to notice
that the power flow feasibility region of this power system
will not have a «hole» if any other bus is assigned as a
slack bus. For example, Fig. 5 demonstrates a power
surface of the 3-bus radial power system with parameters
Vi=V,=V,=110kV, Z,, =20+ 40, Z,; =70 (Q) and its
power flow feasibility regions for different assigned slack
buses.

According to Fig. 5(a), the power surface of the power
system represents a hollow ellipsoidal cylinder. The
projection of the power surface along the active power
axis of bus 3 onto the coordinate plane P,xP,, presented
in Fig 5(b), has a form similar to that shown in Fig. 4
and represents a power flow feasibility region when bus
3 is used as a slack bus. If bus 1 is assigned as a slack
bus, it corresponds to splitting the power system into two
subsystems, whose steady states do not depend on each
other. Steady states of the first subsystem are determined
only by parameters of bus 2, of the second subsystem —
by parameters of bus 3. It follows that the power flow
feasibility region will be a filled rectangle, with the length
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of its sides determined by the maximum active power
which bus 2 or bus 3, respectively, can withdraw from the
network and inject into it, as shown in Fig. 5(c). If bus 2 is
assigned as a slack bus, the power flow feasibility region
will be a filled parallelogram, Fig. 5(d).

If to reduce the inductive impedance Z,,, for example,
to set Z,; =j45 Q, i.e., to increase the electric connection
of bus 1 with slack bus 3, the power surface will also
be represented as the hollow ellipsoidal cylinder (Fig.
6(a)), but projections of two outermost ellipses onto the
coordinate plane P,xP, will not be crossed and the «hole»
inside the power flow feasibility region will disappear, as
shown in Fig. 6(b). The use of other slack buses does not
qualitatively change power flow feasibility regions, and
they will be similar to those presented in Figs. 5(c), (d).

V. SLACK BUS

The power surface allows a geometrical interpretation
of the necessity of using the slack bus to calculate the
steady state, i.e., the active power of the bus is not specified
and regarded as unknown. Usually, such necessity is
explained by the fact [30] that system losses are not known
precisely before steady-state calculations. Therefore, it is
impossible to specify power at all the buses precisely to
provide consistency of the steady-state equations, i.e., their
solvability. However, such consideration cannot explain
the impossibility of calculating the steady state of a lossless
power system with all PV-buses without using the slack
bus. In a lossless power system, active power losses are
equal to zero, therefore, it is not difficult to specify active
power at all buses to provide consistency of the steady-
state equations. However, even in this case, the steady-
state calculation is impossible without assigning a slack
bus. The power surface allows explaining such a need.

Each power system steady state corresponds to a certain
point on the power surface and vice versa. The power
surface is a map of the whole set of power system steady
states, including all hypothetical (unstable) power system
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steady states, into the power space of buses. Outside and
inside the power surface, there are no steady states. Like any
surface, the power surface has a measure zero in the space
of power at buses [31]. In terms of the probability theory,
it means that a chance to specify the coordinates of a point
on the power surface (the power of buses), disregarding
their functional dependence so that they could satisfy the
equation of the surface (steady state), is equal to zero.
Hence, to obtain the coordinates of a point on the power
surface (to solve the steady-state equations), it is necessary
to use a coordinate of this point (active power of the slack
bus) as a dependent variable. Therefore, all computational
models that use steady-state equations always apply the
slack bus explicitly or implicitly to calculate not only the
steady state but also the optimal power flow, to estimate the
power system state, and assess steady-state stability, and
others [32]-[36].
VI. CONCLUSION

The study of steady-state equations reveals that a set
of the power system steady states can be geometrically
represented as a surface in the space of active power of
buses and reactive power of PQ buses referred to as the
power surface of the power system.

The findings indicate that the power flow feasibility
region in the power space of buses, which is widely used in
the theory and practice of power systems, is nothing but the
projection of the power surface along the axis of the slack
bus active power onto the subspace of all other specified
power of buses, and the boundary of this projection is the
surface of marginal states of the power system in the space
of specified power of buses. Since the power surface is not
plane, its projection, i.e., the power flow feasibility region,
and its boundaries, i.e., the surface of marginal states,
will depend on the choice of the axis along which it is
projected, i.e., on the slack bus choice. The lossless power
system power surface is plane, consequently, its power
flow feasibility region and the surface of marginal states
do not depend on the choice of slack bus.

The power surface allows visual interpretation of how
«holesy» through the power flow feasibility region appear
and disappear in the case where the slack bus is changed.

Consideration of the set of all possible steady states of
the power system as the power surface allows making use
of the differential geometry and singularity theory for the
further research of specificity and structure of power flow
feasibility regions and marginal states.
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