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Characteristics of Fixed Bed Process of Woody 

Biomass Steam Gasification 
with Intensive Heat Supply
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Abstract — Plant biomass is one of the most widespread 
renewable energy sources. Energy utilization of 
biomass allows solving some problems associated with 
the development of off-grid energy systems and the 
processing of combustible waste (primarily agricultural 
and forestry waste). This paper is devoted to the study 
of an allothermal gasification process of plant biomass 
materials using a kinetic-thermodynamic model 
developed by the author. The gasification process is 
considered stationary, and steam is used as a gasification 
agent. The power of the supplied heat is considered 
constant (10 kW). One of the significant tasks related to 
allothermal gasification is to choose flowrate parameters 
so that the heat supplied is efficiently used in chemical 
reactions without the threat of reactor overheating. 
The determination of the boundaries of the safe gasifier 
operation involved variant calculations with a view to 
optimizing the gasification conditions. The calculation 
results show that the allothermal gasification process 
can proceed with a thermochemical efficiency of about 
70%. For each fixed fuel consumption level, there is 
an optimal fuel-steam ratio. The complete conversion 
of biomass requires sufficiently high temperatures. 
The produced gas contains a significant steam fraction  
(>50 vol%) even under optimal conditions. The 
calculated fraction of hydrogen in dry gas is up to 
60vol%. The data obtained can be used to assess the 
efficiency of energy units with biomass gasification using 
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high-temperature sources, for example, in systems that 
use and store solar thermal energy.

Index Terms: bioenergy, allothermal gasification, 
mathematical modeling, hydrogen, solar energy. 

I. Introduction

Thermochemical biomass conversion technologies 
have prospects for being used in distributed generation 
systems, not only in agricultural regions, where a large 
quantity of cheap reserves of combustible waste is 
available [1, 2] but also in developed countries, where 
renewable energy sources are attractive due to their 
environmental characteristics [3, 4]. The significant energy 
potential of biomass (primarily forestry and agriculture 
waste) is currently used to an extremely small extent, 
although it can be technically and economically beneficial 
for a wide range of energy systems [5, 6]. Biomass is used 
both as an addition to fossil fuels to reduce hazardous 
emissions produced [7, 8] and as the primary fuel [9]. The 
involvement of biomass in energy production requires 
new methods and modification of the known methods of 
its thermochemical processing. The reliable technologies 
based on these methods can only be created through an 
in-depth scientific study of all stages of the process, from 
the selection of suitable raw materials to the control of 
processes in the reactor and design of cleaning systems 
[10, 11].

Biomass is characterized by a high moisture content, 
high reactivity (compared to fossil fuel), the variability of 
mechanical properties (biomass particles may agglomerate 
[12], or, vice versa, disintegrate during thermal conversion 
[13]), production of significant amounts of tarry products 
during heating and oxidation [14], and a low content of ash 
(which, however, often has increased corrosive properties 
and a tendency to form fine particulate matter [10, 15]). 
Combustion (including co-combustion) is the most widely 
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used biomass conversion technology [16]. Many processes 
of low-temperature thermochemical processing of 
biomass with the production of high-calorific gas through 
pyrolysis and gasification have been proposed [17, 18], 
but their efficiency is very sensitive to the conditions of 
their implementation. There are more specific conversion 
processes, for example, plasma processing [19], and 
the use of supercritical fluids [20]. However, they are 
technologically more complicated and have high energy 
demands.

Pyrolysis and gasification of biomass have the potential 
to be applied in the areas with low energy consumption, 
in decentralized power supply systems. Researchers tend 
to consider low-capacity power units [21, 22], working 
with internal combustion engines [23, 24], microturbines 
[25], fuel cells [26], or gas burners [27]. Analysis of the life 
cycle of bioenergy units, even for small capacities, shows 
their high environmental efficiency compared to the units 
using fossil fuels [28, 29]. Gasification efficiency in typical 
small-scale processes (fixed bed and fluidized bed) is about 
50-70%. Given the thermal efficiency of the gas engine 
at the level of 20-30%, one can obtain fuel utilization 
efficiency of 10-20%. One of the ways to improve the 
efficiency of gasification-based energy units is to use 
external heat sources to enhance conditions in the reactor.

Solar radiation is usually concentrated using collectors 
[30–32], which allow reaching a peak thermal power of 
up to 100 MW with a radiation collection efficiency of the 
order of several tens of W/m2. The use of biomass makes it 
possible to smooth stochastic generation as part of hybrid 
power plants [33, 34]. The processes of thermochemical 
conversion of biomass can be used to store the energy 
of solar radiation (along with electric batteries [35, 36], 
carbonate and oxide cycles [37, 38], and others). To this 
end, fixed or fluidized bed reactors and vortex devices were 
developed [39-41]. The gasification agent is usually steam 
or vapor-air mixtures [42, 43]. The produced combustible 
gas with high hydrogen content can be used for direct 
oxidation or stored in a gasholder [44, 45]. Concentrated 
solar radiation can also be used at thermal power plants 
with solid fuel processing, for example, for heating of 
working fluid [46] or air when burning low-calorific fuels 
[47].

Experimentally, biomass and coal gasification and 
combustion under the intense radiation were investigated 
in [48-50]. The conversion factor of radiant energy in the 
biomass gasification process is usually low (10-20%). 
Kinetics of gasification of carbonaceous materials at high 
temperatures was studied in [51, 52]. Mathematical models 
of gasification processes under the influence of solar 
radiation are proposed in [53-58]. Allothermal processes 
of biomass pyrolysis and gasification were investigated in 
[59–67], including those in a staged gasification unit [68, 
69]. Schemes with the heat recirculation of the produced gas 
were proposed in [70]. Mathematical models of allothermal 
reactors were proposed in [71–75]. This study considers a 

version of the model [74] with fuel and steam heating by a 
constant heat flow. The gasification process is optimized by 
direct calculation of an output parameters on a grid of input 
parameters and selection of the best parameters according 
to efficiency criteria (completeness of fuel conversion, 
hydrogen yield) under some constraints (for example, on 
the maximum temperature). The computational efficiency 
of the mathematical model allows making such calculations 
in a reasonable time.

II. Mathematical model description  
and initial data

The equations describing stationary heat transfer in the 
fuel bed can be written as follows: 
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Here T is temperature, K; Cp is heat capacity, J/kg/K, l 
is effective thermal conductivity, W/m/K; a is heat transfer 
coefficient, W/m2/K; J is flowrate, kg/m2/s; S1 is gas-fuel 
heat transfer surface, m2/m3; S2 is gas-wall heat transfer 
surface, m2/m3; q is a heat source, W/m3; z is spatial 
coordinate (reaction zone length), m; indexes f, g, and w 
correspond to fuel, gas and wall.

When solving the problem numerically, the reactor is 
divided along the axis into some small-volume elements. 
Knowing the residence time of the gas in each of these 
elements, one can write the function of the heat source for 
the selected i-th element in the form:

dry dry pyr pyr gas gasq Q r Q r Q r= + + .
Here Q is a thermal effect, J/kg; r is process rate, kg/

m3/s; indexes dry, pyr, and gas correspond to drying, 
pyrolysis, and char gasification processes, respectively. 
Values of q could be calculated using enthalpies of 
individual components and mass balance for every spatial 
element of length Dz:

 ( ) ( )1
1 1 1
j j j ji i

i i i i i i i
j j

J J
q h T y h T y

z z
-

- - -= -
D Då å .

Here index i corresponds to spatial element number; h j 
is specific enthalpy of j-th component, J/kg; y j is the mass 
fraction of j-th component.

The change in the chemical composition is calculated in 
two steps. The first step suggests considering heterogeneous 
processes: drying, pyrolysis, and the charcoal reactions 
with CO2 and H2O (oxidation by O2 is not taken into 
account):

http://esrj.ru/


Energy Systems Research, Vol. 3, No. 4, 2020I. G. Donskoy.

15

 2 2

2

H O H O
1 H O

eqg

g g

dy C
S y

dz J
æ ör

= b -ç ÷ç ÷rè ø
,

 
f

V
pyr Vf

dm
k m

dz J
r

= - ,

 ( )2 2 2 2CO 1 CO H O 1 H O

1 f
daf eff effC V

g gf
daf

Vdm dm
k S y k S y

dz V dz J
- r

= + - r - r .

Here r is the density, kg/m3; b is coefficient of mass 
transfer, m/s; Ceq is the equilibrium concentration of water 
vapors, kg/m3; kpyr is pyrolysis rate constant, s-1; mV is the 
quantity of volatiles in the fuel, kg; mC is the amount of 
carbon in the fuel, kg; 

2COy , 
2H Oy  are mass fractions of 

gasification agents in the porous volume; keff is the effective 
rate constant of a heterogeneous reaction, m/s. The 
effective rate constant of the heterogeneous reaction keff is 
determined in the quasi-stationary approximation [76]:
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Here k0 is the pre-exponential factor, m/s; E is the 
activation energy, J/mol; R is the universal gas constant. 
Chemical kinetics of reactions in the gas phase is not 
considered: it is assumed that the gas phase quickly reaches 
a state of equilibrium. Thus, at the second step of the 
calculation, chemical transformations are described using 
a thermodynamic model with macrokinetic constraints on 
the rate of heterogeneous transformations. This approach 
is applicable to high-temperature processes, in which the 
rate of gas-phase processes is quite high, compared to 
that of heterophase processes. In the iterations, the local 
temperature can be considered a constant parameter, and 
the heat balance is taken into account when solving the heat 
transfer equations [77]. Kinetic coefficients are presented 
in Table 1.

The presented model of a fixed bed conversion was 
used earlier in the study on low-grade fuels gasification 
processes in [78, 79]. This research assumes that the 
reaction zone of the reactor is uniformly heated through 
the wall with a constant heat flux of 10 kW. The reaction 
zone dimensions taken for calculations are - length is 
0.25 m and diameter is 0.2 m. The fuel is woody biomass 
with the following composition: Wr = 12%, Ad = 0.67%, 
Vdaf = 80% Cdaf = 46.96%, Hdaf = 5.92%; Odaf = 45.23%; 
Ndaf = 1.08%; Sdaf = 0.08%; average particle size is 2.5 cm. 
Variable parameters are fuel flowrate (4-10 kg/h) and steam 
flowrate (2-10 kg/h). The fuel inlet temperature is 300 K, 
the steam inlet temperature is 600 K. The characteristics 
of interest are the outlet gas composition, the degree of 
fuel conversion, and the thermochemical efficiency of the 
process (η). Efficiency is defined as the ratio of the output 
flow of chemical energy (calorific value of the generator 
gas QgJg) to the input flow of energy (calorific value of the 
fuel Q fJ f and supplied heat qex):
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Q J
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The calorific value of the generator gas is calculated as 
the weighted sum of the calorific values of its constituent 
components. With a higher calorific value of the feedstock 
of about 15 MJ/kg, the supplied heat is equivalent to 25-
60% of the calorific value of the biomass entering the 
reactor.

III. Results and discussion

At low biomass and steam flowrates, most of the 
supplied heat goes to temperature increase: as seen in 

Reaction k0, s-1 Ea, kJ/mol 
Pyrolysis 5 ´ 104 96 
C + CO2 1.32 ´ 107 250 
C + H2O 9.3 ´ 105 175 

 

Table 1. Kinetic coefficients

Fig. 1. Relationship between maximum temperature in gasifier and steam and fuel flow 
rates (numbers in the legend are fuel flowrates, kg/h).
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Fig. 2. Relationship between fuel conversion degree and steam and fuel flowrates 
(numbers in the legend are fuel flowrates, kg/h).

Fig. 3. Relationship between thermochemical efficiency of gasification process and 
steam and fuel flowrates (numbers in the legend are fuel flowrates, kg/h).

 

 
Fig. 4. Relationship between hydrogen concentration in raw produced gas and steam 
and fuel flowrates (numbers in the legend are fuel flowrates, kg/h).
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 Fig. 5. Distribution of gas and fuel temperature along the reaction zone.

Fig. 6. Distribution of fuel conversion degree along the reaction zone.  

 Fig. 7. Distribution of gas composition along the reaction zone.
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Fig. 1, temperatures can reach very high values (up to 
2000 K). These conditions are not suitable for real units 
due to constraints on material properties. Additionally, 
the kinetics of chemical reactions and transport processes 
at high temperatures may differ from that assumed in the 
model. Already in this stage of consideration, it is possible 
to exclude a range of inappropriate parameters.

With an increase in the fuel and steam flowrate, 
however, the conversion of fuel decreases (Fig. 2). The 
lower the temperature, the lower the gasification rate, 
which is why, at a steam flowrate of more than 3-4 kg/h, 
charcoal yield increases sharply. At a high fuel flowrate, 
the reactor can operate as a pyrolyzer (for example, for 
the production of activated carbon [80]). For complete 
gasification of biomass, it is necessary to select conditions 
with low fuel flowrates and high steam flowrates, most of 
which serves as ballast to prevent overheating. Fig. 3 shows 
the relationship between the efficiency and the process 
parameters: with a change in the steam flowrate and fixed 
fuel flowrate, the gasification process efficiency has an 
extremum corresponding to the complete conversion of 
fuel carbon. The maximum concentration of hydrogen in 
the produced gas is also observed (about 26 vol%).

Thus, with a fixed external heat supply, the optimal 
parameters of the allothermal gasification process are 
determined by the fuel-steam ratio and the total flowrate 
of reagents (at low flowrates, the temperature in the 
reactor becomes unacceptably high). The range of suitable 
temperatures, in which the gasification reactions proceed 
quite intensively, can be limited, but the reactor overheating 
is not observed in a range of 1000-1100 K. Then, according 
to Fig. 1, one can cut off the area of unsuitable conditions.

The temperature distribution over the reactor length 
for one set of parameters (fuel flowrate 4 kg/h and steam 
flowrate 5 kg/h) is shown in Fig. 5. The fuel is heated at an 
almost constant rate until intense devolatilization begins. 

As seen in Fig. 6, with an increase in the degree 
of conversion, the devolatilization slows down. The 
gasification stage begins approximately in the middle 
of the bed but has enough time to complete. The gas 
composition is shown in Fig. 7: an excess of water vapor 
leads to a shift in the equilibrium in the water-gas reaction 
towards the formation of hydrogen and carbon dioxide, CO 
is formed only at the gasification region, and its fraction 

in gas is very low (4.5 vol%). If the produced gas is dried 
by cooling and complete condensation of water vapors, 
then hydrogen content in it can reach 60%. Some of the 
hydrogens, however, will be converted into a water shift 
reaction (CO2 + H2 = H2O + CO2).

Fuel gasification using concentrated solar radiation, 
in reality, occurs with significant fluctuations of heat 
flow even at short times, which is associated with the 
natural variability of atmospheric conditions. Therefore, 
for a more accurate assessment of the efficiency of such 
processes, it is necessary to take into account the variable 
nature of heat supply. Another disadvantage of the model is 
the absence of tar in the gasification products: according to 
experimental data on allothermal gasification, the tar yield 
can be up to 45% per organic mass [81]. These problems are 
to be solved in further works. A comparison of the obtained 
results with experimental data is presented in Table 2.

It is worth noting that the experimental data are very 
heterogeneous: some relate to continuous reactors (mainly, 
fluidized bed), while others are obtained by averaging 
unsteady conditions. Nevertheless, the experimental data 
can be ranked according to their proximity to pyrolytic 
conditions. During biomass pyrolysis, methane content 
is quite high (up to 10-20 vol%). During gasification, 
methane content is up to 2 vol%. Thus, the presented 
simulation results are in good qualitative agreement with 
data on solar-driven steam gasification of biomass. The 
pyrolysis region is described with lower accuracy: the 
equilibrium model predicts an increase in the hydrogen 
yield with a decrease in the specific steam flowrate (due 
to high temperature and water vapor concentration), but 
experiments show an increase in the methane yield.

IV. Сonclusion

The present study considers a mathematical model 
of the biomass gasification process with steam under 
intensive external heat supply. It focuses on the influence 
of fuel and steam mass flowrates on the efficiency of the 
gasification process. The findings suggest that to maintain 
the process at a suitable temperature (i.e., to prevent 
overheating and provide sufficient fuel conversion), it 
is necessary to accurately estimate mass flowrates and a 

Source H2 CO CO2 CH4 

[82] 44.7 25.2 5.8 1.8 

[83] 
Pyrolysis 44.2 51.8 18.3 23.8 

Gasification 48.8 32.8 16.7 1.7 

[49] 52.4 38.9 3.2 1.5 

[67] 44.6 19.7 22.3 13.4 

[40] 37.2 40.0 11.1 8.8 

Present  
work 

High steam-fuel ratio 54.5 26.7 15.5 2.5 

Optimal 61.0 10.3 26.4 1.5 

 

Table 2. Comparison of modeling results with published data on dry gas composition (vol%.)
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fuel-stream ratio. The results show that under 10 kW of 
external heat supply, suitable parameters are fuel flowrate 
is of 4-10 kg/h and the steam flowrate is of 3-6 kg/h. The 
maximum thermochemical efficiency of the allothermal 
gasification process (given the heat consumption for 
heating the reactor) is about 70%; the maximum hydrogen 
content in the dry produced gas is about 60%. The suitable 
parameters for biomass gasification are in the area where 
the complete conversion of fuel carbon is not achieved.
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