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Abstract — The paper examines the rational 

aggregation of models that are employed to address 

energy sector forecasting challenges specific to various 

forecasting time frames. Possible approaches are 

proposed. The paper concludes with estimates of the 

potential impact of the magnitude and nature of input 

data uncertainty on forecast and aggregation errors. 
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I. INTRODUCTION 

The ongoing shift to the new social and technological 

order, the accelerating rate of scientific and technological 

advance, drastic changes that are expected to take place 

within the structure of energy production and consumption, 

changing requirements to environmental and energy 

security all contribute to the growth of uncertainty with 

regard to future conditions of the energy sector 

development. Obviously, the longer the forecasting time 

frame, the more uncertain are future conditions and the less 

reliable are forecasts. 

Published forecasts of energy sector development in the 

USA and Europe that are made for 15 - 20 years ahead 

prove the non-linear nature of the escalation of the 

uncertainty range as the forecasting time frame extends 

(see Fig. 1). The minimum to maximum range of values of 

primary energy consumption volume in the USA for all 

cases and scenarios covered by the forecasts grows from 

the low 5-10% for the 5-year time frame to the high 13-

23% and 22-38% for the forecasts made for 15 and 25 years 

ahead, respectively. The "Energy Strategy of Russia to 

2030" (approved in 2009) claims that the difference 

between total energy consumption volumes under the 

worst and the best case scenarios amounts to 7% for the 

first 5 years and subsequently grows to 22% and 31% for 

the forecasts made for 15 and 20 years ahead, respectively. 

One of the lines of research undergoing active 

development and aiming at making long-term forecasts 

more evidence-based is the growing sophistication of 

research tools.  

The state of the art of computer and information 

technologies makes it possible to build arbitrarily complex 

systems of models. However, under enormous and ever 

growing uncertainty of input data the following 

considerations are likely to challenge the practicality of 

making research tools ever more complex: 1) more 

granular treatment of data, increase in the number of 

entities subject to forecasting, and disaggregation of 

employed models all require additional information inputs, 
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Figure 1. The uncertainty ranges of forecasts of the US energy 

consumption volumes as a function of forecasting time frames. 
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which increases the likelihood of a higher forecast error; 2) 

merging industry-level and regional systems and models 

within a unified system of models with fully automated 

calculations entails the problem of the optimality criterion 

that these models are to share; 3) the more complex such 

systems of models grow the more difficult it is to track and 

interpret unforeseen results; and, finally, 4) a high opinion 

of the complexity of the tools oftentimes results in 

excessive and unjustified confidence in long-term 

forecasts. 

The above and other deficiencies are all the more 

poignantly manifest themselves when the very same 

models that share the identical level of aggregation are 

applied to forecasting of the energy sector development for 

both medium-term (up to 10-15 years) and long-term 

forecasts. 

A key principle that guides systems studies and the 

process of improvement of research tools is the trade-off 

between the required precision of calculation results and 

the precision of the information used to generate them [2]. 

The principle is analogous to the well-known Occam's 

razor principle and assumes building models that are as 

simple as possible yet capable of accounting for defining 

properties of the studied system that are required to 

appropriately tackle the task under given conditions. This 

echoes the following quote attributed to Albert Einstein as 

well: "Everything should be made as simple as possible, 

but not simpler" [3]. 

Striving for utterly comprehensive while 

mathematically tractable treatment of development 

dynamics and non-linear relationships within the studied 

system as well as the detailed representation of its structure 

can go against the grain of the inherent uncertainty of input 

economic data and the mutable nature of properties of 

complex systems that are being modeled, which can even 

entail negative outcomes.  

The principle of correspondence between research tools 

and actual uncertainty of the input data fed into them as 

well as the required degree of forecast accuracy has so far 

been implemented based on intuitions held by model 

developers and model users and remains more of an art 

than a science. A more evidence-based approach to the 

implementation of the principle can be developed by 

means of the quantitative analysis and juxtaposition of the 

actual uncertainty of input data and the import of 

calculation results obtained thereby in order to identify 

possible issues and make decisions more substantiated. It 

is obvious that the value of forecasts and requirements for 

their validity depend on the forecasting time frame and the 

actual problem being solved. 

The time-honored tradition is to treat the aggregation 

problem as a problem of reducing the dimensionality of a 

model so that the losses of information generated by the 

model are kept to a bare minimum. It appears that given 

large uncertainty of input data and large dimensions and 

complexity of forecasting models it is reasonable to raise 

the problem of the rational aggregation of such models. To 

this end, it is necessary to account not only for the 

magnitude and nature of the input data uncertainty, but also 

for the possible and maximum acceptable error of key 

variables to be forecast. There are no such versatile 

methods that can be applied to solving the problem for an 

arbitrary system and an arbitrary time frame. 

This paper covers possible approaches to rational 

aggregation of optimization models employed for long-

term forecasting of the national energy sector development 

and regional energy supply systems. These approaches 

include the following: an evaluation of the input data 

accuracy (its uncertainty range), a study of the effect that 

various aggregation levels of these data and models have 

on the results generated by multi-variant calculations, an 

identification of an acceptable accuracy level for the 

variables to be forecast. 

II. AGGREGATION IN LONG-TERM FORECASTS OF THE 

NATIONAL ENERGY SECTOR DEVELOPMENT 

 To illustrate the above, it will suffice to refer to the 

beginning of the widespread use of optimization models 

back in the middle of the 20th century with the emergence 

of more elaborate computerized systems of models built on 

top of them in the decades that followed (see e.g. [3,4]). In 

a number of cases, their composition and the level of 

aggregation remain independent of the length of the 

forecast horizon. 

The principle of correspondence between research tools 

employed and the uncertainty of input data is fulfilled by a 

multi-stage approach to narrowing down the uncertainty 

range of conditions and results of forecasting studies [5,6]. 

The approach implies the multi-stage narrowing down of 

the length of the forecast horizon, iterative calculations 

generated by models of various hierarchical levels used to 

handle specific forecasting time frames, and the 

reconciliation of totals in time. In doing so, the initial stage 

covers the time range of over 15-20 years and the minimum 

number of levels and models (see Fig. 2). It is worth noting 

that most of the models of energy-related industries 

development and those of regional energy supply systems 

are optimization models. 

Iterative calculations (carried out in top-down and 

bottom-up fashions) make it possible to account for 

features specific to the development of systems of various 

hierarchical levels that make up the integral national 

energy system. Within each of the time frames, it is the 

problems that are deemed most significant that are to be 

solved. To this end, there are various possible aggregation 

levels for the energy facilities, energy links, and 

geographical areas that are subject to being modeled. 

When using multi-level systems of models, one can 

employ well-known methods of iterative aggregation 

[7,8,9]. 
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In Russia, methods of iterative information aggregation 

in hierarchically built systems of models underwent active 

development in the 1970s and 1980s. Back then they were 

applied to the coordination of decisions generated by 

industry-level and regional model hierarchies of energy 

systems that account for both producer and consumer 

behavior patterns [12,13]. Such methods assume 

aggregation and disaggregation of all interrelated models 

at each iteration step. In so doing, the end of calculations is 

marked by achieving an acceptable level of aggregation. 

The latter is defined as the optimality criterion for the upper 

level model taking the same value for two successive 

iterations. 

The limitation inherent in such an approach is that multi-

level model systems that are designed to forecast the 

national energy sector development, have different top-

level models for medium- and long-term forecasts (see Fig. 

2) with each of the hierarchical levels applying their own 

optimization criteria. Furthermore, under major 

uncertainty, there is no need to strive for the perfect match 

of results of iterative calculations.  

It may be feasible to favor separate aggregation of 

models for each hierarchical level over their combined 

aggregation. To this end, it is possible to implement the 

following calculation steps: 

1. Building a basic (reference) model that is as 

comprehensive as possible in its most detailed 

consideration of energy system facilities, energy links, and 

system properties. 

2. Using multi-variant calculations to identify the input 

data that have the most decisive impact on key variables to 

be forecast.  

3. Estimating the input data uncertainty range. The 

estimates are possible to attain if assisted by an analysis of 

available forecasts of their assumed behavior. Such 

analysis when backed by expert judgment can also provide 

insights into the nature of the data uncertainty (a 

probability distribution of values of a given variable within 

a certain uncertainty range). 

4. Finding an approximate value of the minimum 

possible calculation error for the reference model 

calculations under given uncertainty of input data. This 

value can serve as a reference point for the minimum 

forecast error, which is always larger than zero.  

5. Benchmarking calculation results under a varying 

level of model aggregation against reference model 

calculation results, and identifying corresponding 

aggregation errors. 

6. Based on the results of a comparative analysis of such 

errors against the allowed (acceptable) error one arrives at 

a rational level of model aggregation. 

III. AGGREGATION OF GEOGRAPHICAL AREAS IN LONG-

TERM FORECASTS OF THE ELECTRIC POWER INDUSTRY 

DEVELOPMENT 

Models and methods used to substantiate development 

strategies of the Russian electric power industry are 

covered in sufficient detail in [14]. When optimizing the 

power generation mix 10 to 15 years in advance, one 

accounts for power plant operating conditions and cross-

system flows of generation capacity and power. This calls 

for highly detailed optimization models. A case in point is 

the well-known SOYUZ model [15] that treats the national 

territory of Russia as divided into regional energy systems. 

A system of models used for long-term forecasting of the 

national energy sector, the rational electric power industry 

development can be represented in a less aggregated way. 

This class of models includes MISS, a stochastic 

statistics-based simulation model and its software 

implementation [16]. The model is developed to tentatively 

assess the competitiveness of available types of power 

plants and options to fulfill the energy demand of 

macroregions under ambiguous information on expected 

conditions. 

The optimality criterion used in this model is the 

minimum cost of power generation (production) in a given 

region under the following constraints: the demand for 

electric power in a given area, its export or import 

potential, the capacity of already operating plants and the 

potential for generation capacity additions for various 

types of power plants, and constraints on gas production 

and supply in the area. All of the above constraints are 

specified as ranges of possible values. The upper and lower 

boundaries of possible values are also provided for fuel 

prices, capital intensity, and technical and economic 

indicators that influence the cost of electricity.  

Variables of interest of the model are as follows: the 

capacity of new power plants, the amount of electricity 

they generate, consumption volumes for various types of 

fuels, producer prices at each of the plants as well as the 

weighted average and marginal electricity generation price 

in a given region.  

 
Figure 2. Interactions between hierarchical levels, problems, and 

models specific to various time frames of long-term energy 

sector forecasting studies. 
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To account for information uncertainty, one has to 

generate and study multiple optimal solutions (hundreds 

thereof) under various combinations of input data.  This 

implies the use of well-established repeated random 

sampling Monte Carlo methods (experiments) by the MISS 

model. 

When possible combinations of input data values (all 

treated as interval estimates) are generated, the numeric 

parameters that define the type of probability distribution 

of values within the ranges are varied. This allows 

generating random variables of the most diverse types of 

probability distributions ranging from uniform to normal, 

to lognormal, to exponential, etc. 

The MISS model was used to estimate the effect of 

aggregation on the mix of generation capacity additions 

and the generation cost in European Russia and Siberia 

[17].  

For basic models, each macroregion was made up of six 

regional energy systems so as to account for energy and 

fuel supply conditions and cross-system energy links 

specific to them. During the aggregation process, the six 

regions were consolidated into a single macroregion. In 

doing so, instead of specific uncertain ranges of fuel prices 

we used generalized ones as well as overall constraints on 

the maximum possible additions of gas-fired, coal-fired, 

nuclear power, and hydroelectric plants. 

It follows from the calculations (see Table 1) that model 

aggregation leads to the increase in the error of the 

electricity cost calculations by a mere 1-2%, while the 

uncertainty of the electricity cost forecast itself is 

approximately twice as low as the fuel cost forecast error 

for balancing power plants in a given region. The effect of 

aggregation on the mix of electricity generation capacity 

additions is much more pronounced. The corresponding 

share of combined cycle gas turbine (CCGT) plants grows 

by 1.2-1.5 times. 

The aggregation error increases when a fixed range of 

probable values is fed into the MISS model which are 

assumed to be best modeled not as a normal distribution 

but as interval (uniform) uncertainty. The error also 

increases as the input data uncertainty range extends, 

which is inevitable when the forecasting time frame grows 

larger (see Table 2). 

In the long run, it is power plants of emerging types that 

will play an increasingly important role. That is why as the 

forecasting time frame increases, the impact of model 

aggregation on the mix of electric power generation 

sources will remain more significant than that on the 

projections of electricity prices. 

The calculations carried out using the MISS model 

demonstrate that under assumed conditions the level of 

investment risk associated with options of electric power 

supply in Siberia is higher than that in European Russia. 

The risk level of investing in a given plant was defined as 

an inverse value of the frequency (probability) of its 

inclusion in optimal solutions generated by multi-variant 

calculations. 

It is reasonable then to assume that energy supply 

forecasting studies for the regions of higher investment 

risks should be carried out with reliance on more 

granulated (less aggregated) models. 

IV. APPROACHES TO JUDGING ACCEPTABLE 

ACCURACY OF FORECASTS  

Multi-variant calculations by way of optimization and 

stochastic models enable plotting the curve of changes in 

the model's objective function values and key variables to 

be forecast as a function of the aggregation level. It is more 

challenging to identify an acceptable level of the forecast 

error. As of now, there are no versatile methods that would 

provide such an assessment. Therefore, in practice one has 

to trust one's intuition backed up by the knowledge of task-

specific factors and one's accumulated experience. 

One of the major objectives of long-term forecasts of 

Table 1. Deviation of aggregated model calculation results 

relative to reference values. 

Input data 

specification 

Electricity price Share of CCGT plants 

European 

Russia 
Siberia 

European 

Russia 
Siberia 

Average 

values 
1 0.5 6 9 

 

Normal 

distribution 

2.1 0.1 12 10 

Interval 

uncertainty 
2.4 0.2 18 12 

Note: Calculation results are for the assumed 2020-2025 conditions. 
The deviation is presented as percentage, while structural changes 

(the share of CCGT plants in the total added generation capacity of 

power plants) are in percentage points (pp). 

Table 2. The effect of the increase in the uncertainty range and 

the average gas price on calculation results generated by 

reference and disaggregated models. 

 Units 
 Gas price increase, % 

5 10 25 

Average electricity 

price 
    

before aggregation % 2 4 12 

after aggregation % 3 5.5 14 

      Decrease in the  

  CCGT plants share  

before aggregation pp 14 24 28 

after aggregation pp 13 15 17 

Note: Calculated for European Russia. 
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energy systems development is to provide government 

agencies on a par with companies with takeaways to be 

used for making timely investment decisions. To this end, 

it is crucial to estimate risk and returns of large-scale 

projects of electricity generation capacity additions. Such 

estimates have to be based on forecasts of plausible energy 

price and demand behavior. 

The investor values more remote rewards less than more 

immediate ones. By varying the values of key input data 

variables for any of the time periods and by estimating the 

effect of such variations on the project value, it is possible 

to arrive at conclusions bearing on the acceptable decrease 

in the forecast precision for more remote time periods 

within the forecasting time frame. 

Such an approach was applied, in particular, to assess 

the sensitivity of investment projects returns calculated as 

the Net Present Value (NPV) a) for investment projects of 

nuclear power plants construction to the changes in 

demand (production) volume that occur over time and b) 

for projects of Combined Cycle Gas Turbines (CCGT) 

construction to the changes in gas prices.  

The calculation results (see Fig. 2) show a notable non-

linear decrease in sensitivity of the project value to changes 

in gas prices in more remote time periods. Under assumed 

input data the surge in demand for electricity by as high as 

20% exerts significant effect on the NPV only within the 

time frame limited by the first 15 years. Accordingly, 

forecast performance requirements can safely be relaxed 

for electricity demand forecasts at the end of the nuclear 

power plant life cycle. 

As the length of the forecast horizon extends, 

requirements for fuel price forecast performance notably 

relax as well in the case of the CCGT construction project 

valuation. Even under the scenario of a 1.5-2-time increase 

in the gas price at the end of the forecasting time frame, the 

decrease in the project's net present value does not exceed 

2-3% (see Fig. 3). 

In the case that the results of forecasting studies are used 

to inform investment decision making, the risk value 
 

 
Figure 3 Changes in the project's NPV as a function of changes 

in the electricity generation volume (an NPP construction project) 

or gas prices (a CCGT plant construction project) in one of the 

five-year periods within the forecasting time frame. Increase by 

25% - Curve 1, increase by 50% - Curve 2, increase by 100% - 

Curve 3. 

assumed for the project valuation can serve as a plausible 

reference value, alongside the error inherent in projections 

of the key variable (for example, electricity prices). 

The error for a given time frame can be identified by a 

sensitivity analysis of forecast variables as they respond to 

changes in input data within a predefined range of their 

possible values. 

To illustrate this point, Table 3 lists the results of the 

analysis of the effect that the gas price has on the power 

plant electricity generation cost. Calculations were carried 

out using the MISS model as applied to one of the scenarios 

of Siberian electric power industry development within the 

2020 to 2025 time period. 

The calculations indicate that under assumed conditions 

each 1% decrease in the accuracy of a gas price forecast 

leads to an increase by approximately 0.26% in the 

minimum forecast error with respect to the average 

electricity cost. 

V. CONCLUSION 

Rational aggregation of models employed in practical 

forecasting work entails assessing and accounting for the 

effect of uncertainty of the input data on the probable error 

in key variables to be forecast. It is also essential to 

understand what magnitude of the forecast error can be 

safely deemed acceptable when making timely decisions 

(be they investment, managerial, or strategic ones). 

Obviously, the priority and complexity of efforts to 

accommodate these factors are determined by the 

forecasting time frame and the particulars of the problem. 

The wider the range of the input data uncertainty (that is 

known to grow with longer time frames), the greater the 

unavoidable forecast error, which hence makes the use of 

more aggregated models all the more justified. 

The approaches proposed herein to identify rational 

aggregation of energy facilities and geographical areas in 

various stages of forecasting studies include: an evaluation 

of input data accuracy (its uncertainty range) as changing 

over time, a study of the effect that various aggregation 

Table 3. Correspondence between the uncertainty of input data 

and forecast performance 

Variable Units 

Generation cost 

CCGT 

plants 

System’s 

average 
Marginal 

Uncertainty  

range 

cents per 

kilowatt 

hour 

6.7-

7.4 
7.0-7.6 7.8-8.1 

 % 10.4 8.6 3.8 

Correspondence 

between  

inaccuracy of 

data for 

electricity and 

gas prices 

% / % 0.32 0.26 0.12 

Note. Calculations for the energy systems of Siberia with gas prices 

assumed to fall within the $100-$133 / sm3 range. 

3 

2 

1 

Nuclear 

power 

plants 

CCGT 
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levels of these data and models have on the results yielded 

by multi-variant calculations, an identification of 

acceptable accuracy of the variables to be forecast. 

As of now, there are no universally applicable methods 

that would facilitate such an assessment. In the case that 

the results of forecasting studies are used to inform 

investment decision making, the risk value assumed for 

large-scale project valuations can serve as a plausible 

reference value, alongside the error inherent in projections 

of key variables. The latter is dependent on the input data 

uncertainty range and increases as the length of the forecast 

horizon extends into the future.  
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