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Abstract— This paper proposes an original method for the 

reduction of node voltage equations, aimed at equivalencing 

electrical network. The method is based on equivalent matrix 

transformations using matrix annihilators. The offered 

method, in comparison with the traditional one, makes it 

possible to improve the conditionality of the solved equations 

by an order of magnitude or more. This has a positive effect 

on the numerical stability of the resulting electrical network 

equivalents. The results of reduction of a small, large, and 

very large system of node voltage equations are presented. 

 

Index Terms — electrical network, nodal stress equations, 

reduction, matrix annihilator, equivalencing, conditionality, 

large and very large matrices. 

I. INTRODUCTION 

It is well known that the calculation of electric power 

systems (EPS) conditions is multivariate. Solving the 

complete systems of equations covering all the nodes and 

connections of large power systems, even with simplified 

models, poses a serious problem, because of the lack of 

reliable information on all elements of the network. The 

problem is exacerbated by the need to accumulate and store 

large amounts of information [1] and the corresponding 

increase in the requirements for speed of computers [2]. 

The need to reduce the computation time arises mainly 

in multivariate and multimode calculations in operational 

control, and in EPS operation planning [3, 4]. 

Equivalencing makes it possible both to reduce the time of 

solving the node voltage equations (NVE), and to reconcile 

the amount of information and its error. 

Equivalencing of EPS is the transformation (reduction) 

of a complex mathematical model into a simpler one while 

preserving the most important (required) properties within 

a given accuracy. This approach is widely used with the 

toolkit of Krylov subspaces [5]. There is one more 

approach to the calculation of EPS conditions, where 

equivalencing is reduced to the transformation of an 

equivalent circuit and its parameters to the one having a 

smaller number of nodes and branches and suitable for 

modeling of the initial EPS conditions. 

The paper proposes an original NVE reduction method 

for equivalencing an electrical network. The method is 

based on the NVE matrix transformations with the help of 

algebraic objects, called annihilators of matrices. 

This method, in comparison with the traditional 

algorithm based on the Schur complement, makes it 

possible to improve significantly the conditionality of the 

solved equations, especially for large (up to 10 000 

equations) and very large (up to 100 000 equations) 

systems of NVE. It has a significant effect on the accuracy 

of the obtained electrical network equivalents and on the 

numerical correctness of numerical models. 

II. THE TRADITIONAL APPROACH TO NVE 

EQUIVALENCING 

The procedure of equivalencing is given later as an 

example. Excluded nodes (set M) and nodes stored in 

equivalent units (set N) are given in [2]. 

The nodes were renumbered so that the first nodes were 

from the set N and the rest of the nodes were from the set 

M. In this case, the NVE were structurally divided into 

blocks (block matrices and subvectors) 

.
NN MN N N
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Here, UN ,UM  – the voltage subvectors; IN , MI  – 

current sub-vectors in the vector 
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Submatrix NNY  in the conductivity matrix 

                                        
NN MN
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Y Y
                          (3) 

is square and covers only the constraints on the set of nodes 

N, and the square submatrix YMM  corresponds to the 
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connections on the set M. Note that NMY  and MNY are 

rectangular matrices. 

Expanding equation (1) up to the selected blocks 

 

                    
,

,
NN N NM M N

MN N MM M M

Y U Y U I

Y U Y U I
                  (4) 

 

and expressing the voltage vector of the excluded nodes 

MU from the second equation (4), we obtain the equation 

                   
Y Y Y Y U I

Y Y I

1

1

NN NM MM MN N N

NM MM M

          (5) 

 

which with the introduction of new notations  

э

э

1

1

,

,

NN NN NM MM MN

N N NM MM M

Y Y Y Y Y

I I Y Y I
 

is reduced to the equivalent form 

э э
NN N NY U I . (6) 

Thus, the equivalencing procedure considered above, for 

the given excluded nodes (set M) preserves only the nodes 

of the set N in the resulting equivalent solution 

(equivalent). 

From a formal point of view, the described 

equivalencing procedure is based on the well-known Schur 

complement algorithm [6, 7]. One of the drawbacks of this 

approach is the complexity and, often, the impossibility of 

preconditioning ("regulation" of the conditionality) of the 

solved equations. 

The next section of the paper describes an original 

method. This method is an alternative to the Schur 

complement algorithm, and the equivalencing method is 

constructed on its basis. 

This method, as was said earlier, makes it possible to 

effectively affect the NVE condition, and, as a 

consequence, reduce the computational errors and increase 

the correctness of the equivalent solutions obtained. 

III. MATHEMATICAL JUSTIFICATION OF THE 

ALTERNATIVE METHOD 

The following notations and definitions will be used: 

0n m  –n m  zero matrix; nE  – n n unit matrix;  
T

  

–transposed matrix;  


  –pseudo-inverse matrix 

according to Moore-Penrose; ( )  – maximal rank matrix 

annihilator;  rank   –  rank of the matrix;  size   – 

dimensions of the matrix (vector dimension);  null   – 

basis of the null space of the matrix;  cond   – condition 

number of the matrix; || ||  –given vector norm [6, 7]. 

In this paper, the so-called left annihilator of matrices is 

used, which is called the annihilator. Recall [8, 9], that the 

maximal rank matrix annihilator of m n  matrix M  of  

rank r  is called matrix M , and 0( )n r mM M , 

with rank n rM . 

For simplicity, we shall assume that the annihilators of 

zero satisfy the orthogonality condition 

T
n rM M E . 

Well-developed methods for computing the null space 

null( )M  of a matrix M can be used for calculation of 

annihilator matrices [6, 10]. In this case  
T

Tnull M M

We will consider the NVE in the following block 

decomposition: 

x
b

x

1
1 2

2
A A , (7) 

where 1A , 2A –  are rectangular submatrices of  

size size1 1 2 2, ,n n n nA A  (8) 

in this case 1 2n n n . The decomposition (7), (8) is 

clearly shown in Fig. 1. 

The statement: the solution of linear equation (7) for 

invertible block matrix 1 2A A  is determined by the 

equivalent formulas [9] 

 

x b x

x b

1 1 2 2
1

2 1 2 1

,

.

A A

A A A

 (9) 

x b

x b x

1

1 2 1 2

2 2 1 1

,

,

A A A

A A

 (10) 

here 1A , 2A  are the left annihilators of zero of the 

maximal rank submatrices 1A , 2A , respectively, 1A , 

2A  are the pseudoinverse matrices of the submatrices 1A

, 2A . 
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Figure 1. Block partition of matrices and vectors in the matrix 

equation. 

IV. REDUCTION OF NVE BASED ON MATRIX 

ANNIHILATORS 

Considering NVE (1) in the division into blocks, as it is 

done in equation (7), we introduce the notations 

 

,NN MN
N M

MN MM

Y Y
Y Y

Y Y
 (11) 

and write (1), taking into account (11). The obtained 

equation is 

 

.N N
N M

M M

U I
Y Y

U I
 (12) 

Annihilator MY  is introduced and it satisfies the 

following conditions: 

T
0 , .M M M M M M M MY Y Y Y E  (13) 

Then, according to the first equation (10), from the 

theorem proved earlier we can write 

.NM N N M
M

I
Y Y U Y

I
 (14) 

Let us introduce new notations 

э э, ,NNN M N N M
M

I
Y Y Y I Y

I
 

(15) 

then, equation (14) can be rewritten in a generalized form 

э э .NN N NY U I  (16) 

Equations (6) and (16) are different, but they have the 

same solution NU . The principal difference of equation 

(16) is that it allows solving the problem of preconditioning 

in order to minimize computational errors simultaneously 

with equivalencing.  

It is well known [6, 11, 12] that in order to reduce the 

influence of errors in the initial data, to increase the 

accuracy of the solution, and to accelerate the convergence 

of the iterative methods, various algorithms are used that 

usually consist of elementary transformations of rows 

(columns) of matrices in equation (7): scaling, 

regularization, balancing, change of conditioning 

(preconditioning, use of spectrally equivalent operators), 

etc. 

With respect to matrix equation (16), the problem of 

reducing errors will consist in minimizing the ratio [11] 

э

э
.

N N

N N

U I

U I

 (17) 

However, the direct determination of the value in 

terms of the coefficients of the matrices of the original 

equation is difficult due to the nonlinearity of the valuation 

operation. Therefore, it is preferable to use a qualitative 

characteristic called the matrix condition number [6, 10, 

11]. In the considered case, this number is 

э э эcond
1

NN NN NNY Y Y  (18) 

and it satisfies the inequality 

э

э

э
cond .

NN
NN

N N

IU
Y

U I

 (19) 

Given (15), the ratio (19) is transformed to the form 

 cond .

N

M
M

N

M N

N N

M
M







  
       

 
 
  
 

I
Y

IU
Y Y

U I
Y

I

 (20) 

The larger the condition number (18), the greater the 

impact of the original data errors on the solution to NVE. 

Reduction of the condition number (18) can be achieved 

by further transformation of the NVE equivalent system 

(16) by introducing a new matrix D , which should be [12] 

as close as possible to 
1
,M NY Y  easily computable and 

easily invertible. In this case, the NVE will be replaced by 

the equation 

э э
NN N NDY U D I , 

where 

э эcond condNN NNDY Y . 

V. REDUCTION OF A SMALL NVE SYSTEM 

Let us consider the computational example [9]. 

We analyze the electric network shown in Fig. 2 [2]. For 
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convenience of calculation, we take all the line  resistances 

to be the same Ohm10ijr  ( 0,1ijY  S), except for the 

two lines Ohm13 20r  ( 13 0,05Y S), Ohm24 5r      

( 24 0,2Y S).  

The basic mode corresponds to the NVE system 

0
1
0
2
0
3
0
4

0,25 0,1 0, 05 0 8,5

0,1 0, 4 0,1 0,2 1
,

0, 05 0,1 0,25 0 7

0 0,2 0 0,2 2

U

U

U

U

 (21) 

 

The results of the calculation are shown in Fig. 2. 

Let us suppose that the set M of excluded nodes is 3 and 

4. Then, matrix (3) has the following block 

decompositions: 

0,25 0,1 0,05 0

0,1 0,4 0,1 0,2
,

0, 05 0,1 0,25 0

0 0,2 0 0,2

N MY Y  (22) 

considering that 

T
T

null

0, 05 0

0,1 0,2

0,25 0

0 0,2

0,9646 0, 0915 0,2295 0, 0915

0,1837 0,6752 0,2333 0,6752

MY

 

we have 

0,9646 0, 0915 0,2295 0, 0915

0,1837 0,6752 0,2333 0,6752

0, 05 0

0,1 0,2 0 0

0,25 0 0 0

0 0,2

M MY Y

 

 

Performing further calculations, we obtain 

э 0,2205 0,1011
,

0,1251 0,1301NN M NY = Y Y  

э 9,8979
,

0,7473
N

N M
M

I
I Y

I
 

э э
1 85,0

,
87,5N NN NU Y I  

which exactly corresponds to the values indicated in Fig. 

2. 

It is worth noting, that the condition number of matrix 

(3) and the conductivity number of original matrix (22) is 

cond 15,9373N MY Y  for the original matrix,  and  

эcond condY
0,2205 0,1011

5,5204,
0,1251 0,1301NN   

for the equivalent, which is less by almost 3 times. This 

number can be further reduced if MY  is  

6,6150 4,7836 3,2365 4,7836

3,5836 8,6518 4,1774 8,6518MY  (23) 

The use of annihilator (23) in the calculations provides 

э 0,2205 0,1011

0,1251 0,1301NNY  (24) 

эcond 1,2444NNY , which is by more than an order of 

magnitude less than cond N MY Y . In this case, the 

matrix 

э 0,24 0,12
.

0,12 0,56NNY  

calculated by the traditional method, has a 3,5 times greater 

condition number than matrix (24). 

 
Figure 2. The scheme of the electrical network in the basic mode. 

VI. REDUCTION OF A LARGE NVE SYSTEM 

Let us consider the reduction in a large NVE system, the 

basic mode of which corresponds to a matrix 

http://esrj.ru/


M. Gadzhiev et al.                       Energy Systems Research, Vol. 1, No. 1, 2018 

 

 

 

98 

 

size 1000 1000
NN MN

MN MM

 
  

  

Y Y

Y Y
 

and vector of  

size 1000
N

M

 
 

  

I

I
. 

Matrix (3) and vector (2) for the basic mode are dense 

and their elements vary within the following limits: 

4,2; ...;5,7 .  The total number of non-zero elements of 

the matrix from (3) is 59,91 10 . 

Let the set M of excluded nodes be equal to 995, and, 

accordingly, the number of nodes 1000 995 5N    . 

Calculation by formulas (11) – (16) in Matlab, using 

orthogonal annihilators leads to the following results: 

 

э ,

1,8571 0,7800 1,4434 0,4049 0,4329

0,7242 0,6592 1,5200 0,5827 1,6713

0,2350 0,3492 0,6982 0,9702 1,3692

0,6484 0,6965 0,0061 1,1241 0,5262

0,8512 0,2244 0,1312 1,1808 1,2175

NNY

 

(25) 

 

э
I 0,7807; 0,1045; 1, 4519; 0,2478; 0,1782N , 

э э
1

1,6907

0, 4469

0, 8643 .

0, 3758

1, 4110

N NN NU Y I  (26) 

In this case, the condition number of matrix (25) is 

7,8019, and the Euclidean error rate of solution (26) with 

respect to the exact value of the solution vector is 

3,825310-13. 

Calculations using conventional methods allow us to 

obtain the following matrix and vector 

 

э
Y

41,7122 19,8072 2,6691 84,1475 29,5413

55,6173 48,4439 9,7584 51,1095 43,1407

84,5763 19,1018 14,5854 42,1711 75,9152

87,8123 63,1374 21,0482 19,9958 59,6218

49,3494 8,4865 36,5263 64,3591 27,9839

NN

 
(27) 

э

8, 3722

44, 0346

41,1712

103,2302

15,6018

NI , 

 

with more than 3,5 times the Euclidean norm of the error 

with respect to the exact value of vector 1,465110-12. The 

condition number of matrix (27) is 39,4146 and it is almost 

5 times higher than the condition number of matrix (25). 

VII. REDUCTION IN A VERY LARGE NVE SYSTEM 

Let us suppose that a very large NVE system is given, 

whose dimension is 410 .  Matrix (3) has  no zero elements, 

thus the number of non-zero elements is 810 , that is one 

hundred million ( 6100 10 ). In this case, the elements in the 

matrix and vector (2) vary in the range from 10,7  to 11,5

. Suppose that the set of excluded nodes M is equal to 
39 10 , which  means that the number of nodes left is 

4 310 9 10 100N     . 

As a result of the calculations, the 100 100 matrix was 

obtained and it had the condition number

эcond 47,3464NNY , while the condition number of 

matrix э
NNY  with the same size, was 

эcond 10390,4112NNY ,  that is more than 200 times 

higher. 

We note that it is not possible to directly use the Schur 

complement algorithm for such a large matrix. In this case, 

the authors used the parallelization of the computation 

process. 

VIII. CONCLUSION 

An original equivalencing algebraic method is proposed 

to reduce the equations of electric network steady-state 

conditions on the basis of matrix annihilators. The method 

allows transformations of the equivalent circuit and its 

parameters to a form having a significantly smaller number 

of nodes and branches. Numerical procedures for 

computing matrix annihilators are well developed for large 

(100 1000n  ) and very large ( 3 510 10n  ) matrices, 

while the variation in the annihilators properties makes it 

possible to significantly (ten times and more) improve the 

conditionality of the resulting NVE equivalents and 

thereby reduce computational errors and improve the 

correctness of the solution. 
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