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Abstract — One of the main requirements imposed on 

integrated indices is the independence of their 

components. In actual practice, a set of reliability, cost-

effectiveness and safety indices of electric power 

facilities is known. It is based on real opportunities for 

data collection. The number of such technical and 

economic indicators varies from units to tens. If 

necessary, the informational content of the integrated 

estimates can be enhanced by involving the data on 

ratings and operation conditions. The joint use of these 

data, however, often encounters difficulties connected 

with the difference in both the scale of their 

measurement and the extent to which they are 

interrelated. The methods, algorithms, and 

subprograms are developed to select independent 

technical and economic indicators that increase the 

reliability of comparison and ranking of the facilities 

and to make recommendations for the improvement of 

the reliability and cost-effectiveness of their operation. 

 

Index Terms — Reliability, efficiency, technical and 

economic indicators, ranking, boiler, distribution 

function 

I. INTRODUCTION 

Operating experience with the equipment and devices 

(facilities) of electrical power systems (EPS) shows that the 

need for the reliability, cost-effectiveness, and safety 

(efficiency) of their operation has increased over time [1]. 

With the marked discrepancy between energy 

characteristics of the facilities and their technical 

condition, the main directions to improve the management 

of overall performance are to transition from intuitive 

comparison and ranking of the EPS facilities to the 

automated management.  A necessary condition for the 

automated management is the development of methods for 

calculation of operational values of the integrated indices 

(II). 

 The integrated index suggests independence of the 

technical and economic indicators (TEI) defining it. 

Violation of this condition distorts the magnitude of the 

integrated index depending on the number of the 

interconnected TEI and their relationships. Technical and 

economic indicators of EPS facilities have, as a rule, a 

quantitative scale of measurement. Their relationship is 

established by Pearson linear correlation coefficients .op

calculated based on the statistical data of operation and 

comparing .op with critical value   for the set type I 

error [2]. At the same time, it is supposed that the 

distribution of F(TEI) corresponds to the normal law and 

the number of sample realizations ns>30. This assumption 

underlies the calculation of , provides the 

correspondence of distribution of  F  to the normal law 

and the possibility of assessing the accuracy (boundary 

values of a confidence interval) of the estimation of .op .  

In actuality, however, the data on all techno-economic 

indicators characterizing the technical condition of a 

facility are not always available, the number of sample 

realizations (for example, the number of the same-type 

energy units) is not always ns>30, the distribution of 

F*(TEI) does not always correspond to the normal law, and 

relationships between techno-economic indicators are not 

always linear. This discrepancy raises doubts about the 

reliability of the analysis of TEI relationship, with all that 

it implies. The methods to assess the relationships between 

real TEI samples are not developed. The informational 

content of integrated indices can if necessary be enhanced 

by attracting, for example, some rated data characterizing 

overall performance of a certain facility. These data, 

however, have a rank-order scale of measurement, which 

creates certain difficulties for direct calculation of 

integrated indices following from the difference in the 

scales of measurement. However, given that data on TEI 
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of the facilities measured with a numerical scale can be 

transformed so that it will be possible to measure them with 

a rank-order scale (and not vice versa), this difficulty of 

assessing the relationship between the considered 

indicators of the facility will be partially overcome [3].  

The existence of a relationship between the indicators 

measured on a rank-order scale in practice is controlled by 

one of the rank tests. For the analysis, we have chosen the 

Spearman rank correlation coefficient, which is described 

in detail in [4].  

1. For the automated comparison and ranking of the 

efficiency of the electric power system facilities, it is 

necessary to be able to calculate their integrated indices 

of operation in terms of single indicators that have 

different units, scales, and scale of measurement. 

2. The accuracy of the integrated indices calculation 

depends considerably on the number of the 

interconnected single indicators mp: the larger the 

number of mp, the larger the calculation error. 

3. The existence of relationship between techno-economic 

indicators is traditionally established based on the excess 

of the correlation coefficient calculated according to the 

statistical data on facility operation over a critical value 

with the set type I error . 

4. The selection of functionally and statistically 

independent TEI allows us not only to increase the 

reliability of the integrated index evaluation but also to 

reduce the volume of necessary information and 

bulkiness of calculations.  

II. METHOD AND ALGORITHM FOR MODELING 

INDEPENDENT REALIZATIONS OF SPEARMAN RANK 

CORRELATION COEFFICIENT 

Traditionally, for small ns of TEI of ranked facilities (for 

example, generating units of power plants), the 

significance of the Spearman rank correlation coefficient  

.op  is determined by: 

- Calculating Student’s t-test by the expression 

                op s

э 2

op

n 2
t

1

 




                     (1) 

- Determining a critical value of Student’s t-test  t for a 

set level of significance  and the number of degrees of 

freedom (ns-2) from the reference book; 

- Comparing  the values of  top and t : 

     

if top> t, then Н  H2, else  Н  H1           (2)  

 

where H - the assumption;  - compliance; H1 and H2 – 

assumptions (hypotheses) about the absence or existence 

of a significant relationship between TEI.  

Compilation of a list of independent TEI is an 

intermediate stage for comparing and ranking the facilities, 

therefore the manual  calculation of a set of the values op 

(for example, when the number of TEI equals 10, it is 

necessary to rank 90 ор values) causes awkwardness, labor 

input and high risk of wrong decision. 

 We have developed an automated system for comparing 

and ranking the EPS facilities, which makes it possible 

both to perform faultless calculations of ор, and to 

determine critical  values directly by the statistical 

function of distribution (SFD) of F*(м). Modeling of 

possible realizations of м and formation of SFD F*(м) 

were carried out as follows: 

1. The standard RAND() program models two 

independent samples of random variables {1}n and {2}n 

with a volume of nS that are uniformly distributed on the 

interval [0;1]. 

2. A sequence of serial numbers (ranks) of sample 

realizations {1}n and {2}n  in terms of their variation 

series is formed.  Let them be designated by {r1}n and {r2}n. 

Thus, the indicators measured with the numerical scale will 

be transformed into indicators with the rank-order scale of 

measurement. 

3. The first realization of 1,м is calculated according to 

Spearman's formula [4] 

          

sn
2

1, j 2, j
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s s

6 (r r )

1
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
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4. Calculations for points 1-3 are repeated N times. 

5. A variation series of a set of possible values 1,м  is 

built in ascending order of 1,n. The probability 
*

1 1.м
iF ( )
N

  is compared to each ordinal number of this 

series. At the same time * *

1.м 1,м1 F ( ) R ( )      , 

 

Table 1. The sequence of calculation of 1,м. 

Number 

of items 
1,j 2,j r1,j r2,j rj=r1,j–r2,j 

2

jr  Note 

1 

2 

3 

4 

5 

0,287 

0,337 

0,806 

0,998 

0,303 

0,249 

0,776 

0,265 

0,913 

0,633 

1 

3 

4 

5 

2 

1 

4 

2 

5 

3 

0 

-1 

2 

0 

-1 

0 

1 

4 

0 

1 

sn
2

j

j 1

1,ì 2

s s

6 r

1 0.7
n (n 1)



 

   



 

 
Total 15 15 0 6 
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The sequence of 1,м calculations using formula (3) is 

given in Table 1 for illustrative purposes. 
As one would expect, we will receive similar results 

with calculations based on expression (4) that represents a 

nonparametric analog of formula for calculation of Pearson 

linear correlation coefficient: 

         
s

v v

n

1, j 1 2, j 2

j 1

1,op n n
2 2

1, j 1 2, j 2

j 1 j 1

(r r ) (r r )

0,7

(r r ) (r r )



 

  

  

  



 

        (4) 

where 1r and 2r  are medians of samples  
s

1 n
r and 

s
2 n
r , 

respectively. 

 Calculations of γор by Pearson's formula 

    

sn

1, j 1 2, j 2

j 1

op n n
2 2

1, j 1 2, j 2

j 1 j 1

( ) ( )

0,252

( ) ( )



 

      

  

      



 

,      (5) 

 

confirms possible essential distinction between linear (γор) 

and rank (ор) correlation coefficients for the same samples 

{1}n and {2}n. It is worth reminding that random 

variables  have a uniform distribution on the interval 

[0,1], i.e. do not correspond to the normal law of 

distribution, which is the initial prerequisite for the 

application of Pearson’s formula (5). 

III. CONSIDERATION OF IDENTICAL REALIZATIONS OF 

INDICATORS OF ATTRIBUTES 

The above-discussed method for transformation of a 

numerical scale of measurement of random variables  to a 

rank-order scale does not allow for a degree of their 

divergence.  

At a fixed number of intervals equal to rmax=5 and the 

number of realizations of the modeled samples ns5, the 

existence of repeated numbers of intervals (points) is 

inevitable. This statement is confirmed by the data of Table 

2 that demonstrates the distribution of the degree of 

influence of six attributes on reliability and cost-

effectiveness of power transformers [3]. The degree of 

influence is specified in points of a five-point system.  

To consider this feature, we will somewhat transform 

points 2 and 3 of the algorithm for construction of F*(м). 

A range of change in  [0;1] is represented by five equal 

intervals: (0-0,2), (0,21-0,4), (0,41-0,6), (0,61-0,8), (0,81-

1,0). For realization of samples, number b of the interval 

(the number of points corresponding to each realization) 

corresponding to them is determined. Thus, the samples 

{1}n and {2}n  are replaced with the samples of points 

{b1}n and {b2}n. Unlike the samples of random variables , 

the samples  {b1}n and {b2}n may contain two and more 

identical values. 

According to [4], we arrange samples {b1}n and {b2}n in 

ascending order, assign serial numbers (ranks) to 

realizations of the samples,  identify identical realizations 

in samples,  and calculate an average size of ranks for 

identical realizations. 

Table 3 demonstrates the results of calculations and 

assessment of 2,м by (4). Samples of random variables 

{1}5 and {2}5 are the same as in Table 1. 

The comparison of Tables 1 and 3 shows that the 

estimates 1,ор, and 2,м differ greatly. The value of 2,м 

calculated by formula (4) is less than 1,ор, calculated by 

formula (3).  

The block diagram of the algorithm for the formation of 

ranks of realizations of discrete random variables is 

presented in Fig.1. 

Table 2. An assessment of the rate of occurrence of points characterizing the reliability of power transformers 

Number of 

items 
Transformer type 

The frequency of emergence of point 

1 2 3 4 5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

АТДЦТН-250000/220 

ТДТН-63000/110 

IEC-60076 

ТДН-16000/110 

ТДН-25000/110 

ТДТН-25000/110 

ТДТН-40000/110 

ТДТН-25000/110 

ТМН-10000/110 

АТДЦТН-250000/330 

ТДН-80000/330 

ТДТН-10000/110 

ТДН-25000/110 

АТДЦТН-200000/220 

IEC-60076 

АОДЦТН-167000/500 

АОДЦТН-167000/500 

ТДТН-40000/110 

АТДЦТН-250000/220 

- 

- 

- 

1 

- 

1 

4 

- 

- 

- 

- 

1 

- 

1 

- 

- 

- 

2 

1 

- 

1 

- 

5 

- 

4 

1 

- 

- 

1 

- 

1 

1 

2 

- 

- 

- 

1 

- 

- 

4 

3 

- 

- 

1 

1 

- 

3 

- 

- 

4 

1 

2 

2 

- 

- 

1 

1 

4 

1 

1 

- 

3 

- 

- 

- 

1 

2 

6 

- 

4 

- 

3 

2 

2 

1 

2 

2 

- 

1 

- 

3 

- 

- 

6 

2 

3 

- 

- 

- 

1 

1 

4 

4 

1 

3 
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Table 3. Order  of 4,М calculation by (4). 

j b1,j b2,j r1,h r2,j r1,j=r1,j- 1r  r2,j=r2,j- 2r  r1,j-r2,j 
2

1, jr  
2

2, jr  Note 

1 

2 

3 

4 

5 

2 

2 

5 

5 

2 

2 

4 

2 

5 

4 

2 

2 

2 

4,5 

4,5 

1,5 

3,5 

3,5 

1,5 

5 

-1 

-1 

-1 

1,5 

1,5 

-1,5 

0,5 

0,5 

-1,5 

2 

1,5 

-0,5 

-0,5 

-2,25 

3 

1 

1 

1 

2,25 

2,25 

2,25 

0,25 

0,25 

2,25 

4 

1r = 2r =3 

2=0,152 

Total 15 15 0 0 1,25 7,5 9 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 1. A block diagram of the algorithm for the formation of ranks of discrete random variables 

 

IV. ANALYSIS OF FIDUCIAL DISTRIBUTIONS OF 

CORRELATION COEFFICIENTS OF THE CHOICE OF 

INDEPENDENT VALUES. 

The above calculations and publications demonstrate that 

the relationship between Pearson γ and Spearman  

correlation coefficients for the same samples is non-

unique. At the same time, their critical values are assumed 

to be equal [6]. To analyze this feature, we propose 

comparing fiducial distributions of these correlation 

coefficients. It is worthwhile to remind that fiducial 

distribution means the distribution of possible realizations 

of integrated indices [7]. The integrated indices are taken 

to mean the indices whose realizations can be obtained 

from calculations. The integrated indices, for example, can 

be represented by arithmetic (geometric, harmonic) mean 

of random variables, indices of their spread, the coefficient 

of technical availability, and availability factor. The 

correlation coefficients also refer to them. This is a special 

approach to solving the inverse problem. Correlation 

coefficients are calculated for the samples of independent 

random variables providing their statistical independence.  

A large number of calculations are required to obtain 

possible realizations of the correlation coefficients. For this 

reason, the automated system for the formation of the 

statistical functions of fiducial distributions (SFFDs) is 

necessary. The SFFD of each correlation coefficient can be 

formed by repeatedly modeled samples, and all correlation 

coefficients can be calculated by one, but a repeatedly 

modeled pair of samples of random variables. The result of 

the SFFD calculation will be the same. However, the 

second way allows estimating the difference between the 

correlation coefficients. The developed algorithm and 

calculation program suggest the following sequence of 

calculations: 

1. Two samples  
s

1 n
  and 

s
2 n
 , random variables  

with uniform distribution in the range of [0,1] with the set 

ns volume are modeled [8]. 

2. Pearson linear correlation coefficient γ1,м  is calculated 

by (5). 

3. Samples  
s

1 n
 and 

s
2 n
  are transformed to the 

samples of points  
s

1 n
b and 

s
2 n

b  for which Pearson 

linear correlation coefficients γ2,м are calculated by (5). 

4. Sample ranks  
s

1 n
r and 

s
2 n
r  for samples  

s
1 n
 and

 
s

2 n
  are determined. The ranks are used to calculate 

Spearman rank correlation coefficients 1,м  by (1). 

5. Spearman rank correlation coefficient 2,м is calculated 

for samples 
s

1 n
b  and  

s
2 n

b by (4),  given identical 

realizations. 

4. Assign ranks  given identical realizations:

 

1. Model samples   and  

2. Transform  and to samples 

and ,  

3. Arrange pairs  with respect  to   in 

ascending order 

5. Arrange  pairs with respect to   in 

ascending order 

6. Assign  ranks   given identical realizations: 
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6. Points 1-5 were repeated N=10000 times. 

7. As a result: 

7.1. For illustration, the relationship between realizations 

γ1,м, γ2,м, 1,м and 2,м are printed for the first ten pairs of 

samples  
s

1 n
b and  

s
2 n

b of their correlation 

coefficients. The results of such calculations are given in 

Table 4 for ns=5. The underlined figures mean the 

maximum absolute values of the correlation coefficients. 

7.2. Corresponding samples 
s

1 n
  and  

s
2 n
 , and also 

correlation coefficients γ1,м, γ2,м, 1,м and 2,м were printed  

to illustrate the relationships between realizations of γ1,м, 

γ2,м, 1,м and 2,м provided that at least one of them 

exceeds the critical value given in literature data γ=,. 

Some characteristic results of modeling for ns=5 and 

γ0,05=0,05=0,878 are given in Table 5. The samples allow 

controlling reliability of the calculations. 

7.3. The corresponding values γ1,м,, γ2,м,, 1,м, and 2,м, 

were determined by N=(1-)N to compare the critical 

values of linear and rank correlation coefficients at  equal 

to: 0,05; 0,01; 0,005; 0,001 0,1 and ns=5. The results of the 

calculations, and reference data about γ1, м, are given in 

Table 6.  

7.4. Realizations of γ1,м, γ2,м, 1,м and 2,м were 

autonomously ranked and realizations corresponding to the 

probability of F*(….)=0,05·i·N at i=1,20 were printed to 

compare the regularities of variations in SFFDs of possible 

realizations of linear and rank correlation coefficients. 

Quantiles of these SFFDs corresponding to the probability 

of F*(…) =0,5 and series ns=5 are given in Table 7. 

Figure 2 demonstrates the histograms of f*(γ1,м), f*(γ2,м) 

and statistical functions of fiducial distribution of Pearson 

γ1 and Spearman 2 correlation coefficients for ns=5. 

The analysis of modeling allows us to draw the following 

conclusions. 

 

Table 4. Relationship between realizations of linear and rank correlation coefficients for ns=5 

Numbers 

of items 

Correlation coefficient at ns=5 

γ1,м γ2,м 1,м 2,м 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0,404 

0,612 

0,213 

0,346 

-0,247 

0,521 

-0,340 

-0,925 

0,217 

-0,881 

0,319 

0,593 

0,321 

0,612 

-0,339 

0,461 

-0,240 

-0,955 

0,036 

-0,785 

0,2 

0,7 

0,1 

-0,5 

-0,4 

0,7 

0,1 

-0,8 

0,2 

-0,9 

0,306 

0,574 

0,162 

0,645 

-0,34 

0,730 

-0,278 

-0,889 

0,263 

-0,763 

Table 5. The difference in solutions related to the relationship between samples for linear and rank correlation coefficients 

Numbers of 

items 
Samples  

5
  Calculation results 

γ1,м γ2,м 1,м 2,м 

1 

 

2 

 

3 

 

4 

 

5 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

0,334 

0,076 

0,879 

0,965 

0,059 

0,533 

0,179 

0,486 

0,867 

0,300 

0,699 

0,910 

0,405 

0,136 

0,688 

0,129 

0,618 

0,396 

0,404 

0,942 

0,425 

0,618 

0,366 

0,265 

0,434 

0,800 

0,096 

0,674 

0,433 

0,909 

0,290 

0,544 

0,661 

0,563 

0,281 

0,670 

0,651 

0,204 

0,394 

0,846 

0,693 

0,984 

0,611 

0,709 

0,872 

0,836 

0,459 

0,256 

0,790 

0,635 

0,832 

 

0,947 

 

0,750 

 

-0,846 

 

-0,928 

0,896 

 

0,832 

 

0,808 

 

-0,885 

 

-0,908 

0,8 

 

0,8 

 

0,9 

 

-0,9 

 

-0,7 

0,973 

 

0,872 

 

0,947 

 

-0,884 

 

-0,918 

 

Table 6. Critical values Γ1,М,, Γ2,М,, 1,М, AND 2,М, AT NS=5 

 γ1,м, γ2,м, 1,м, 2,м, γ1,м, [6] 

0,1 

0,05 

0,01 

0,005 

0,001 

0,8120 

0,8852 

0,9620 

0,9761 

0,9887 

0,8077 

0,8847 

0,9625 

0,9715 

1,0 

0,8 

0,9 

1,0 

1,0 

1,0 

0,8158 

0,8922 

0,9733 

0,5747 

1,0 

0,805 

0,878 

0,959 

- 

0,991 

Table 7. Quantiles of distributions corresponding to F*(…)=0,5 

   γ1,м γ2,м 1,м 2,м 

5 

8 

10 

0,4033 

0,2754 

0,2325 

0,4082 

0,2790 

0,2376 

0,4 

0,2613 

0,2364 

0,3947 

0,2717 

0,2357 
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Figure 2. Histograms of distribution of correlation coefficients f*(γ1,м), f*(2,м) and SFFDs R*(γ1,м), R*(1,м) KK at ns=5; R*(γ1,м)=1-

F(γ1,м)    R*(1,м)=1-F(1,м) 

 

Data from Table 4 indicate that the numerical estimates 

of correlation coefficients γ1, γ2, 1 and 2 for the same 

samples can differ greatly. 

Table 5 highlights the largest values of the correlation 

coefficients for each of ten "tests". Pearson coefficients of 

linear correlation between realizations γ1,м, γ2,м, 1,м and 

2,м exceed the critical value γ0,01=0,765, which 

demonstrates the existence of a linear statistical 

relationship between them.  

The data of Table 5 confirm the effectiveness of 

calculating no less than two correlation coefficients, in 

particular: 

- When indicators are measured with a numerical scale,   

it   is   advisable   to   calculate  Pearson  linear correlation 

coefficients γ1 and γ2 and Spearman rank-order correlation 

coefficient 2 [9];  

- When indicators are measured in points, it is better to 

calculate Pearson linear correlation coefficient γ2 and 

Spearman rank-order correlation coefficient 2.  

The recommendation is based on the difference in the 

extent to which these correlation coefficients take into 

account the properties and volume of samples (nature of 

distribution, the existence of identical realizations, small 

sample size, nonlinear nature of the relationship, etc.); 

The data of Table 6 demonstrate almost insignificant 

divergence between the critical values of the linear 

correlation coefficients γ1,м,, and γ2,м, obtained as a result 

of modeling, and theoretical data (γ1,). It is worth noting 

that γм, are calculated by the samples whose random 

realizations have uniform distribution in the range of [0,1]. 

Although Pearson linear correlation coefficient suggests a 

correspondence between random variables of samples and 

the normal law, in the case of small ns, the law of 

distribution has insignificant influence. The insignificant 

divergence between γм, and γ is, in fact, the indicator of 

faultlessness of the calculation algorithm. There is virtually 

an insignificant divergence between correlation 

coefficients γ1,м,, γ2,м, and 2,м,. It makes up no more than 

2,5%, which experimentally confirms the existing 

statements about equality of γ1,м, and 2,м,. However, the 

attempts to use these relations to state the equality between 

γэ and э,э calculated using experimental data, can lead to 

incorrect conclusions as estimates can differ greatly. 

An analysis of SFFD of correlation coefficients indicates 

that: 

- at ns=5÷10 the function of the fiducial distribution of 

F*(1,м) has a pronounced  discrete character; 

- SFFD of F*(1,м) is symmetric with respect to 1,м=0 

even at ns=5 and, therefore, can be represented as a 

distribution of absolute value 1,м; 
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Table 8. The relationship between sample size and М. 

ns 5 6 7 9 9 10 

м 0,1 0,0571 0,0357 0,0238 0,0167 0,0121 

 

- the sampling increment м of an argument of 

distribution of F*(1,м) depends on the value of ns . The size 

of м decreases nonlinearly with an increase in ns. Table 

8 presents the relationship between ns and м. 

It is worth noting, that decision H is traditionally made 

according to criterion (2) developed for continuous random 

variables. In fact, there are no critical values 1, 

corresponding to  at discrete nature of change in F*(1,м). 

Therefore, we propose comparing the probabilities of 

F*(1,м) and к rather than quintiles of distribution of 

F*(1,м) (i.e. ор and м,):  

if 1,м,j  ор < 1,м,(j+1) and F*(1,м) < (1-к),  

then Н  H1  else Н  H2. 

Modeling results and quantiles of correlation coefficients 

at =0,5 presented for illustrative purposes testify to their 

equality and identity of the change pattern for the specified 

volume of sampling ns, SFFDs F*(γ1), F*(γ2), F*(1) and 

F*(2). Distributions of correlation coefficients γ1,м and 

2,м which are graphically presented in Fig.2, make it 

possible to conclude that the distribution of correlation 

coefficients both from 1, and  2 has a discrete nature and 

influence of discreteness declines with an increase in ns. 

Discreteness of distribution of F*(2) decreases owing to 

the consideration of identical values of sample realizations. 

V. CONCLUSIONS 

The developed method for formation of a list of 

independent techno-economic indicators makes it possible 

to transition from a full list of the indicators to individual 

ones, which is an indispensable condition for increasing the 

objectivity of integrated estimates of overall performance 

of electric power system facilities. The proposed method is 

based on the following. 

1. A method for transformation of a numerical scale of 

measurement of the techno-economic indicators to a rank-

order one. This method allows increasing both the number 

of the attributes characterizing overall performance of the 

objects and reliability of the decision by means of 

transition to nonparametric criteria for the assessment of 

the relationship between the indices (parameters) of the 

attributes to be considered; 

2. The possibility of the automated assessment of critical 

values of linear and rank correlation coefficients by 

constructing the statistical distribution function of the 

modeled realizations; 

3. A possible essential distinction of experimental values 

of linear and ranking correlation coefficients at their almost 

identical critical values. 

4. A method intended to take into account the differences 

in changes in techno-economic indicators. 
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