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Abstract— The paper is concerned with the study aimed 
at the development of methods for emergency control 
in power systems with distributed generation plants. 
The control actions enabling the state parameters to 
meet stability constraints were generated by changing 
the vector of controlled parameters along a preset path 
corresponding to the shortest distance from a point 
of the initial state to a limiting hypersurface. In this 
case, limit loads equations of the power system were 
used. The quality of dynamic processes during control 
actions was ensured by harmonized tuning of the 
automatic voltage regulator (AVR) and automatic speed 
regulator (ASR) of distributed synchronous generators. 
Computer-aided modeling was used to demonstrate 
that the post-emergency operating conditions meeting 
stability constraints can be calculated using limit load 
equations while using the starting algorithm that 
enables the values of operating parameters to reach 
the nearest boundary of the feasibility (stability) 
region. Modeling of the power system in MATLAB 
environment demonstrates that the fuzzy algorithms 
used to control AVR and ASR settings considerably 
enhance the quality of transient processes of voltage, 
frequency, and power when the power of distributed 
generators in post-emergency conditions is reduced.

Index Terms — power supply systems, distributed 
generation plants, emergency control, harmonized setting, 
automatic voltage regulator, automatic speed regulator.
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I. Introduction

 The use of intelligent electric power systems (EPS) 
with active-adaptive networks implies the active use of 
distributed generation (DG) plants located in the immediate 
vicinity of power consumers. The following facilities can 
be referred to as the DG plants:
•	 unconventional renewable energy sources: solar panels, 

wind generating plants, fuel cells, and others;
•	 small- and medium-capacity cogeneration plants 

(small thermal power plants based on gas turbine and 
combined cycle gas turbine technologies), as well as 
mini- and micro-hydro power plants.
Active use of DG technologies in EPS requires new 

algorithms and systems for control in normal, emergency 
and post-emergency conditions [1 – 4] to provide the 
required stability and quality of the dynamic transition.

A main function of emergency control (EC) systems is 
to ensure static non-oscillatory stability of post-emergency 
conditions (PEC) of EPS. In this case, the control actions 
are generated to provide the PEC parameters meeting 
the feasibility (stability) constraints along a certain 
trajectory DY in the space of controlled parameters Y [5 
– 7]. Normally, the trajectory DY is assumed to be linear 
and can be determined either by setting based on the 
preliminary calculations; or based on the condition of the 
shortest distance to a limiting hypersurface or according 
to the minimum damage caused by disconnecting power 
sources and consumers.

The use of DG plants makes the calculation of operating 
conditions meeting stability constraints relevant to the 
distribution networks and power supply systems. This is 
of special importance in electric power systems equipped 
with DG plants based on unconventional renewable energy 
sources. Such plants, as mini hydropower plants and 
offshore windmill farms, can be located at a distance from 
the load centers, which ‘narrows' the static non-oscillatory 
stability areas.

When set optimally, the automatic regulators of 
distributed generators can ensure the necessary oscillatory 
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stability margin and quality dynamic transition in emergency 
and post-emergency conditions. Optimal adaptive control of 
DG plants in different conditions can be achieved by using 
advanced intelligent technologies [8 – 18].

The paper describes a DG emergency control system 
which, in contrast to the approaches described in [2, 
5, 7], is based on determination of the post-emergency 
conditions that meet the stability constraints with the 
limit load equations and a fuzzy control system for tuning 
the controllers of the DG plants in emergency and post-
emergency conditions that provide a qualitative dynamic 
transition. This makes it possible to maintain the steady-
state and dynamic stability of power supply systems with 
distributed generators.

II. Problem statement 
The emergency control is illustrated in Fig. 1, where the 

stability region is cut by the coordinate plane of generator 
active powers Pi, Pj. In this Figure, it is assumed that the 
stability and transmitted power limits coincide [7]. Curve 
1 corresponds to the boundary of the stability region for 
the complete network diagram, Curve 2 corresponds to a 
similar boundary when one of the main transmission lines 
is disconnected, and curve 3 corresponds to the condition 
ℑ  = const, where ℑ  is the required value of the stability 
margin of the post-emergency conditions.

The aim of the emergency control application is to 
reach one of the points: YZ

1( ) ,YZ
2( ) ,YZ

3( )

YZ
1( ) = Y0 + DY

1( ) = Y0 + t1ΔY
1( ) ,

YZ
2( ) = Y0 + DY

2( ) = Y0 + t2ΔY
2( ) ,

YZ
3( ) = Y0 + DY

3( ) = Y0 + t3ΔY
3( ) , where DY k( ) , k =1..3  

– the trajectories of the condition change in space Y; 

ΔY k( ) , k =1..3  – directions of the condition change; 

tk , k =1..3  – scalar parameters that determine the amount 
of generator power reduction in the relevant direction; index 
k = 1 corresponds to the direction set a priori, index k = 2 
corresponds to power reduction in the direction of the normal 
to the limiting hypersurface, while k = 3 – corresponds to 
power reduction ensuring minimal possible damage caused 
by disconnection of power sources and consumers [5 – 7].

Power should be reduced in the chosen direction ΔY k( )  
with an acceptable quality of the dynamic processes, which 
can be achieved through the use of automatic voltage 
regulator (AVR) and automatic speed regulator (ASR) in 
the synchronous generators of DG plants. The relatively 
small power of DG plants and the small constant value of 
DG plants rotor inertia require that the mutual influence of 
AVR and ASR be taken into account when tuning them. It 
should also be noted, that the optimal control requires the 
adjustment of AVR and ASR settings when the operating 
conditions change greatly in of both DG and power supply 
systems.

Below are the results of the studies aimed at the 

development of methods for determining the post-
emergency operating conditions that meet the stability 
constraints and for ensuring a quality dynamic transition 
when generator power is reduced.

III. Methods for determining post-emergency 
operating conditions meeting stability 

constraints

The emergency control system of distributed generation 
plants is intended to ensure stable operation of generators 
in electric power system in post-emergency conditions, 
in which case the parameters of the conditions meeting 
the stability constraints can be determined by   different 
methods, for instance, a method based on limit loads 
equations (LLE) [7, 19, 20] whose derivation is described 
below.

The equilibrium position of the autonomous system of 

differential equations  ni
i xxxw

dt
dx ,...,, 21  n...i 1= , 	( 1 ) 

is asymptotically stable according to  Lyapunov, if the 
linearized system (initial approximation system) is stable 
too:

k
xx

n

k k

ii x
x
w

dt
dx

kk













01
, n...i 1=  		  ( 2 ) 

where 0kkk xxx  ; 0kx  – equilibrium point coordinates 

satisfying the equations

  002010 ni x,...,x,xw  ; n...i 1= .

The linearization procedure is performed based on the 
expansion of functions   n...i,x,...,x,xw ni 121   in Taylor's 
series

1
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0det =
∂
∂
X
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	Fig. 1.  Determination of post-emergency conditions meeting.  

stability constraints: ∂F
∂X

 – matrix of Jacobi for steady-state 

equations (SSE); ℑ  – stability margin
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and rejection of nonlinear terms.
Solutions to equations (2) are stable if real parts of all 

roots of the standard equation are negative

	   0det 




 


 E

X
W ppD 		  ( 3 ) 

where 
X
W


  the Jacobian matrix of  XW  calculated at the 

equilibrium point 
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
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
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E = diag1 – an identity matrix of order n. Equilibrium 
will be unstable if equation (2) has at least one root with a 
positive real part. If there are no such roots but there are just 
imaginary ones, then the system of initial approximation 
cannot be used to judge about stability. In this case, an 
additional study is required.

With regard to steady states of EPS, the stability 
according to Lyapunov, which is called steady-state 
stability, is subdivided according to the nature of 
disturbance into non-oscillatory (aperiodic) and oscillatory 
stability. The first type of instability is associated with the 
appearance of positive real roots, while the second type – 
with the emergence of complex roots with a positive real 
part. Practical methods for determining the non-oscillatory 
and oscillatory stability differ from one another. Below, 
we analyze only the methods and criteria that are used to 
determine the non-oscillatory instability.

In order for the standard equation (3) that can be 
represented in the following expanded form with regard 
to p symbol 

	   00
1

1  
 a...pappD n

n
n 		  ( 4 ) 

not to have real positive roots pk, it is necessary and 
sufficient that all coefficients (4) be higher than zero. 
However, if stability limit is determined in the process of 
load increase with respect to initial steady state, there is 
no need to follow the signs of all coefficients, because the 
constant term α0 of the characteristic polynomial will be 
the first to change the sign for negative.

Indeed, it follows from (3) and (4) that 

		   
X
W


 det10

na 		  (5)

and α0 = 0 when pk = 0.
Therefore, with changes in the real root value from 

negative to positive, the change in the sign of α0 is 
inevitable. The sign control of the constant term of a 
characteristic polynomial is the basis for the main methods 
used to determine stability –limited conditions.

The electrical power system steady states are defined 
by non-linear equations of the type 
			     0YX,F  		  ( 6 )

where  Tn...fff 21F  – n-dimensional vector function, 

satisfying the balance equations of power or currents at 

network nodes;  Tm...yyy 21Y  – the set vector of regulated 

parameters (independent variables); T
n...xxx 



 21X  – 

required vector of non-regulated parameters (dependent 
variables).

Active and reactive powers of generators and loads, 
as well as voltage magnitudes observed at some network 
nodes, are usually used as controlled parameters. 
Dependent variables are real and imaginary components or 
magnitudes and phases of nodal voltages. EPS frequency 
value can also be part of X dependable variables vector.

The EPS loads corresponding to the points of parameter 

space YXZ = , at which equations (1) and condition

		    0det10 



X
Wna 		  (7)

are satisfied can be considered to be steady-state non-
oscillatory stability-limited conditions, where W – 
n-dimensional vector function, corresponding to right-
hand sides of differential equations

		   YX,WX 
dt
d 		  (8)

that describe transient processes in EPS for small-scale 
disturbances; а0 – the constant term of the characteristic 

polynomial	 0det 









X
WEp

The expression for а0 can be obtained without 
generation of differential equations, but immediately from 
steady-state equations (SSE).
		  W(X, Y) = 0		  (9)

written considering characteristics of the electrical 
system components for small-scale disturbances. 

Points satisfying condition (5) form discriminant 
hypersurface LW  in space Y (Fig. 2).

The conditions can be considered to be limited by the 
existence (transmitted power) when they correspond to the 

parameter space points YXZ =  , at which steady-state 
equations (6) and the condition 

		
0det 



X
F

		
(10)

are satisfied, where 0det 


X
F  – the Jacobian matrix for the 

steady-state equation (6).
Points satisfying condition (10) form the discriminant 

hypersurface LF in space Y (Fig. 2). 
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In a general case, matrices of Jacobi 0det 


X
F  that are used 

to determine steady-state parameters, and matrices X
W




 

that are used for stability analysis can fail to coincide for 
the following reasons:

1.	 Steady-state equations (6) can be written for various 
assumptions and in various forms, which, in the 
general case, do not coincide with those made to write 
differential equations (8).

2.	 Based on the assumption that astatic control of voltage  
UG at generator buses is performed by changing the 
settings of automatic voltage regulators, the magnitude 
of UG for calculations of operating conditions is 
normally assumed to be given. If such a control is 
performed by dispatcher discretely, then the supposition 
on voltage stability at generator buses, which is quite 
admissible for the calculation of operating conditions, 
will be unsatisfactory for the determination of stability. 
In this case, it would be more correct to assume 
generator electromotive force to be constant with some 
reactance determined depending on type and values of 
AVR amplification factors or to fully take into account 
the mathematical formulation of the excitation control 
law. In the case of sufficiently high AVR amplification 
factors, both methods of generator modeling lead to the 
same results. 

3.	 When the substations that power the consumer have 
transformers with on-load voltage regulation, the load 
power can be considered constant in the calculations 
of operating conditions. Contrastingly, in an analysis 
of stability, the load power should be assumed to be 
changeable as per static characteristics, because the 
said control is of discrete nature and does not work in 
the case of small-scale disturbances.

An analysis carried out in [7] shows that despite the 
development of a number of effective algorithms, the 
problem of express calculation of operating conditions that 
are limiting in terms of their static stability and transmitted 
power remains relevant. The technique for determining 
the limiting conditions, which does not require multi-step 
computational procedures, which is applicable whether 
or not the transmitted power and stability limits coincide,  
and which allows  avoiding the difficulties in solving ill-
conditioned systems, can be implemented on the basis of 
the LLE and their generalizations [7, 19, 20].

This technique is based on the replacement of condition 
(5) with an equivalent ratio which can be represented in 
two ways:

		  S
X
WVS
∂
∂=  = 0; 		 (11)

		   R
T

⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂=
X
WVR = 0 		  (12)

where VS, VR – n-dimensional vector functions; 

 Tns...ss 21S ;  Tnr...rr 21R  – 

respectively, eigenvectors of matrices 
T

, 












X
W

X
W  that 

satisfy zero eigenvalues.
Since (11) and (12) define the eigenvectors to the 

accuracy of constant factor, one of their components can be 
assumed to be arbitrary, different from zero. For example, 

1== nn sr . Another way for the extension of definition for  
equations (11) and (12) is to set a length, for example, 
unit length for vectors R and S, that is, to supplement 
these systems with the equations:   01 SSS TU  or 

  01 RRR TU
The Jacobian matrices elements are the functions 

of dependable parameters Х. Consequently, unlike (7), 
conditions (11) and (12) allow an analytical description of 
hypersurface LW of limiting conditions.

Determination of static stability-limited conditions is 
reduced to simultaneously solving the sets of equations 
which can be represented in two ways

	

  
  

  
















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,,
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0S
X
WYSXVS
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T

T
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;

		  (13)

or

	

  

  

  
























0,1

,,

,

RRR

0R
X
WYRXVR

0YXF

T

T

U

t

t

,

,

		  (14)

where F –  -dimensional vector function satisfying steady-
state equations; Х –  -dimensional vector of uncontrolled 

iy

jy






 


 0det
X
F

FL






 


 0det

X
W

WL

0det 



X
W

0det 



X
W

Fig. 2. Regions of stability and existence of conditions in space 
of parameters Y.
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parameters; Y – m-dimensional vector of controlled 
parameters; Y t( ) = Y0 + tΔY ; Y0 – the value of vector 
of controlled parameters in the initial (pre-emergence) 

conditions; R – eigenvector of matrix 
T











X
W  satisfying 

zero eigenvalue. In the case where the limits of stability and 

transmitted power coincide, matrix 
X
F


  is used instead of 

matrix 
X
W


 .

Systems (13) and (14) are equivalent, however, in 
equations (14), eigenvector R, which coincides with the 
direction of normal to hypersurface LW, is used. This makes 
it possible to generalize the limit load equations for the case 
of their search in the most dangerous (critical) direction of 
load increase that corresponds to the shortest distance in 
the metrics of normalized independent variables from the 
point of the considered conditions to the limit hypersurface, 
and thus to obtain an objective estimate for the static non-
oscillatory stability margin. For this reason, below, the 
equations of limit loads  are considered in the form of (14).
Multiple calculation experiments [7] show that equations 
(14) can be used to calculate the operating conditions of an 
electric power system to reach the boundary of the stability 

region: the point  1
LY  (Fig. 1). To achieve the required 

stability margin, power should be additionally reduced in 

the direction of  1Y  (point  1
ZY ) or in the direction of 

vector R, Fig. 3.
It is worth noting that the two-stage procedure refers 

only to the algorithm of determining the point YZ
R( ) ,  

whereas dynamic transition is performed directly from 
point Y0 to point YZ

R( ) , .
The post-emergency conditions meeting the stability 

constraints can be calculated with respect to the shortest 
path by modifying the limit load equations, which is 
indented to search for the limit load in the critical direction 

of load increase  [7, 20]. Provided the  limits of stability 
and transmitted power coincide, this problem can be 
formulated as follows:

Find 

		   2
1

min YM DD 2TYmin
		 (15)

subject to 

		    0YYXF  D, 0 		  (16)
where Y0 – vector of controlled parameters in the initial 

(pre-emergence) conditions;  Tndy...dydyD 21Y  – 
incremental vector of variables Y0 which ensure that 
the operating conditions attain the hypersurface LF; 
M = diagµ i ,µ i  – scaling factors.

To solve the formulated problem (assuming that the 
limits of stability and the transmitted power coincide), the 
Lagrange function is written as follows

       YYXFYMYYX DDDDL T  0
2
1

0 ,+ , + , 2TY
where   – the undetermined multiplier vector.

The L minimum corresponds to the conditions

 

  .DL

;L

D
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D
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













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2
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,

2T2





Y

	 (17)

The first equation of the system corresponds to the 

shortest distance min  from the point Y0 to hypersurface 
LF in metrics set by M matrix. The second equation of the 
system ensures that the operating conditions correspond to 
the hypersurface min  for non-zero  . The third equation 
of the system corresponds to the balanced operating 
conditions.

1

2

0det =
∂
∂
X
F

const=ℑ

МW,iP

МW,jP

0Y( )1
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( )RYZ
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jy

*
LY

0Y

02
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2 YMY DD T






 


 0det
X
F

FL

Fig. 3. Additional power reduction in the direction of vector R. 
Fig. 4. Geometrical interpretation of search for a critical 
direction of load increase.
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Geometrically, the solution to system (17) is the contact 
point of hypersurface LF and ellipsoid with the center at 
point Y0 (Fig. 4), defined by the equation:

 Geometrically, the solution to system (17) is the contact 
point of hypersurface   and ellipsoid with the center at point   
(Fig. 4), defined by the equation: 02

min YM DD T 2Y
Equations (17) can be represented as follows:

  0YM
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Vector   is determined with the accuracy of the 
multiplier, consequently the variables can be replaced 

 2
1

YMR DD T 2
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After determining from the first equation
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Y
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 2-

and after substituting it in the third equation, we can obtain 
a system representing the modification of the limit load 
equation which makes it possible to calculate the post-
emergency conditions meeting the stability constraints 
based on the shortest path:
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If vector components DY belong to the first group of 

equations (18) linearly, then E
Y
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
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This takes place when steady-state equations written in 

a Cartesian coordinate system can be represented as:
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where Pi0, Qi0 – power injections in the initial conditions; 
''
i

'
i U,U   – real and imaginary components of nodal voltage; 

dPi, dQi – vector components DY; p – the number of 
network nodes except for the slack node. With an implicit 

X dependence of Y, the ∂F
∂DY

⎛
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⎜
⎜
⎜

⎞

⎠

⎟
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T

 matrix is block-diagonal 

and its elements are determined by the formulas given in 
[7]. 

When Newton's method is used to solve equations (18), 
the following system of linear equations is solved at each 
iteration:
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Modeling shows that based on equations (18), the 
electric power system operating conditions can be 
calculated to meet the boundary stability constraint using 
the shortest path: the point  2

LY  (Fig. 1). To achieve the 
required margin, power should be additionally reduced.

In some cases of using equations 14 or 18, however, the 
‘remote boundary’ of the stability region can be achieved  
[21], i.e. the point  db

LY  in Fig. 5. In this case, the obtained 
solution differs in the inversion of power injection signs, 
and cannot be used in practice.

An effective method to cope with the ‘remote boundary’ 
problem can be implemented based on starting algorithms, 
which employ special methods of solving the steady-state 
equations [19, 22].

The starting algorithm, in particular, can be based on 
V.A. Matveev method whose iterative formula has the form 

           kkkkk XFX
X
FXX

1
1










 		  (19)

0det 


X
F

МW,iP

МW,jP

0Y

 nb
LY

 db
LY

Fig. 5. To the problem of the ‘remote boundary’ of the stability 
region.
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where  k  – an adjusting factor, determined by the 
expression

λ k =
1
Bk
, if Bk >1

1, if Bk ≤1
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The second multiplier for Bk is the maximum absolute 

value of the vector component obtained by multiplying the 

matrix of the second derivatives of vector-function F(X) by 

the elements of correction vector ΔX  that are determined 

at the k-th iteration. The iterative procedure (19) ensures 

the convergence of the computational process for any 

existing conditions, while when nonexistent conditions are 

calculated, the calculation process “hangs” at the point of 

the limiting hypersurface, where the Jacobian of the system 

of steady-state equations equals zero. 

Another starting algorithm can be implemented based 

on the computational methods [19], which additionally 

take into account the higher-order terms of the Taylor 

series expansion of the vector-function  YX   inverse 

to F(X).

Based on the expansion, X is represented as

      ...... k
k  FXFXFXXX 2

210

where  r
k FX   – correction vectors, depending on 

products of vector components 

		     0XFXFF  		  (20)

with the sum of powers equal to r. Besides, at the point of 

solution , it is necessary to assume  0XFF  .

Corrections ΔXp are calculated using the recurrent 

expressions:

ΔX1
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F X k( )( );
ΔX2

k( ) = ∂F
∂X

X k( )( )⎡

⎣
⎢

⎤

⎦
⎥
−1

B2
k( );

ΔX3
k( ) = dF

dX
X( k )( )⎡

⎣
⎢

⎤

⎦
⎥
−1

B3
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where k – iteration number;  k
rX  – vector of r-th 

corrections; r = 1...3.
Components of vectors

          Tk
rn

k
ri

k
r

k
r

k
r b...b...bb 21B ,

which are parts of expressions for the second and third 
corrections, are calculated using the formula

        kk
i

Tkk
ib 112 XΓX  ;         kk

i
Tkk

ib 213 X X ,

where )k(
iΓ  – Hessian matrix of the function  Xif , 

calculated at the point  kX .
The first correction coincides with the one determined 

by Newton's method and corresponds to the linear 
approximation of X from ΔF. The second and subsequent 
corrections correspond to the approximation of X with 
polynomials of a higher degree, hence the acceleration 
of the iteration process when the number of considered 
corrections increases.

In the presented form, the method under 
consideration, due to the poor convergence of the series 

  
r

r
k XXX 0

with the initial approximations chosen 'far' from the 
solution, gives a less reliable calculation of 'heavy' loads 
than Newton's method. An increase in the reliability of 
the method is associated with the improvement in the 
convergence of the indicated series, and to this end, the 
correction factors are introduced as follows. Instead of 
search for the point of the solution Xp, where F(Xp) = 0, we 
determine an intermediate point X* with the value of the 
function of residuals

      11 0  ,XFXF *

Substitution

     00 XFXFXFF  *

in (20) indicates that the introduction of adjusting 
factors changes the corrections by αr times, where r – the 
correction number.

Thus,  
r

r
r* XXX 0 .

Enumeration of α can always provide convergence of the 
series, and when the intermediate point X* is found, one can 
start searching for a solution Xp or the next intermediate 
point, if the series converges unsatisfactorily. As a result, 
we will either obtain a solution or the search process will 
'hang' at some limit point XL, if there is no solution. The 
latter manifests itself in that the coefficients α, ensuring 
the convergence of the intermediate series, start tending 
to zero, while the sequence of intermediate points tend 
to point XL, where the Jacobian of steady-state equation 
vanishes.
Reliable convergence of the series is ensured when α is 
chosen by the condition
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where 10   – the coefficient ensuring a set speed of the 
series convergence;
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– norms of the vectors of the first and higher-order 
corrections.

The next approximation of the vector of dependable 
variables is calculated as follows:
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1 .

A large group of starting algorithms can be implemented 
using the steady-state equation solving methods based 
on the minimization of residual vector norm [22]. 
Computational experiments indicate that when the starting 
algorithms are used, high accuracy is not required, it is 
sufficient to obtain approximated values lying in a wide 
neighborhood of the desired solution.

The use of X parameters calculated using the starting 
algorithms as initial approximations when solving 
equations 14 or 18, ensures reliable convergence to the 

required points  nb
LY , lying on the 'near' boundaries of the 

stability region (Fig. 5).
In [7], the authors propose the equations which can be 

used to determine the limit conditions satisfying extreme 
values of functionals that depend on controlled and non-
controlled operating parameters. These equations can be 
used to implement a technique of selecting optimal control 
actions of emergency control equipment that will provide 
the minimal damage caused by generator tripping and 
load shedding to perform the emergency control actions. 
It is also possible to take into account the damage due to 
variations in voltage at the nodal points of the network 
and frequency in the electric power system. A distinctive 
feature of the proposed technique of choosing optimal 

control actions is the absence of multi-step optimization 
procedures and numerical differentiation. The search for 
the optimal solution is carried out by solving a system 
of equations with quadratic nonlinearity using Newton's 
method.

IV. Dynamic transition in the case of reduction in 
generator power

A qualitative dynamic transition during the reduction 
in power of synchronous generators can be performed 
based on the optimal tuning of AVR and ASR [9, 12]. 
In this case, the coordinated tuning of AVR and ASR 
becomes particularly important, which is associated with 
the relatively low power of distributed generators and low 
inertia constant of their rotors. The principle of harmonized 
tuning implies the determination of optimal tuning factors 
for AVR and ASR which ensure minimal voltage and 
frequency deviations from the set values, as well as high 
damping properties during electrical transient processes, 
which is confirmed by the studies performed on simulation 
models of EPS with DG plants [9, 12, 13, 18].

The AVR and ASR settings are harmonized in two steps 
[9]: identification of 'turbine-generator' model based on 
the experimental data using wavelet transform; search for 
optimal setting of regulators using genetic algorithm [9–
12] and determination of the oscillatory stability margin.

For identification, a model of the closed-loop system 
of the DG plant control is built using the experimental 
data. To this end, apriori information is used to determine 
numeric values of complex transfer factors of the DG 
plant transfer function matrix, as a relation of spectrums 
of relevant output and input signals of the closed-loop 
'turbine-generator' system (Fig.6).

The characteristic polynomial of the considered system 
is determined using the following expression:

	       ω ω detω jjjD RG
M WWE  	 (21)
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Fig. 6. The 'turbine-generator' system structural diagram: WT – complex turbine gear ratio; WE – complex exciter gear ratio.
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where  ω jGW  – matrix transfer function of the controlled 
object ('turbine-generator' system), which is determined 
experimentally;  ω jRW  – regulator matrix transfer 
function that takes into account relationship between  AVR 
and ASR, and includes the required tuning coefficients:

     
 








ω 0
ω  ω 

ω 
jW
jWjW

j U
AVR

ω
VRAASR 

RW ;  ω jWASR  – ASR 

complex transfer factor;  ω jWω
AVR  – complex transfer 

factor for frequency-tuned AVR channel;  ω jWω
AVR  – 

complex transfer factor for AVR voltage-tuned channel.
Experimental determination of DG plant matrix transfer 

function allows taking into account the influence of other 
DG plants and relation with EPS in possible steady-state 
conditions of the power supply system.

An approach is proposed to obtain accurate complex 
transfer factors of the DG plant.  In this approach, the 
testing effect occurs on the basis of the regulator noise [9] 
detected using the wavelet transform. The technique of 
regulator noise detection with wavelet transform includes 
the following steps:

1.	 Select a basic wavelet and decomposition level N; 
perform wavelet decomposition of signal  tf   to 
level N;

2.	 Set a threshold for each level and process the detail 
coefficients;

3.	 Reconstruct wavelet by using initial approximating 
factors of level N and modified detail coefficients of 
levels 1... N;

Fig. 7. Regulator noise detection using wavelet transform technology: а) initial regulator signal with noise; b) scaling-gram of the 
initial regulator signal with noise; c) the detected useful signal; d) regulator noise.
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		  min
2
1

2
1

ImRe  JJJ 		 (23)

where JRe, JIm – criteria satisfying the proximity of 

hodographs in the regions of real and imaginary values. 
These criteria are formed as follows:

	     



0

2  
Re dωωReωRe MD DDJ 	 (24)

	     



0

2  
Im dωωImωIm MD DDJ 	 (25)

Characteristic hodograph of system (21) with 
determined AVR and ASR tuning coefficients allows 
judging on stability and other dynamic properties in a 
limited frequency range. In particular, the stability of 
distributed generators can be estimated with respect to the 
rate of change in the phase of characteristic hodograph (21) 
using the curve analysis method [27] proposed by Bushuev 
V.V.:

		
1

d
)(d)(










 DV 		  (26)

where )(D  – phase-frequency characteristic 
determined by the system frequency hodograph.

When frequency ωP reflects the equivalent frequency 
of system self-oscillations, characteristic (26) determines 
the real part of some equivalent root, which can be used to 
assess the extent to which the system is stable.

The method of harmonized AVR and ASR tuning allows 
determining the optimal tuning coefficients of regulators 
for different operating conditions of the power system and 
forming a basis of rules for the fuzzy control system. To 
this end, the use of an auto-tuning unit with the modules of 
operating condition identification and harmonized tuning 
of regulators is proposed. Figure 8 shows a block diagram 
of the proposed fuzzy control system.

4.	 Detect signal noise used for identification: 

     tftftf w    v  , where fw  t( )  – useful signal 
component obtained with the wavelet transform; 

 tf  v  – noise.

Figure 7 shows the effectiveness of wavelet transform 
technology for detection of regulator noise when used for 
identification: initial regulator signal containing noise; 
scalinggram of the initial noisy regulator signal, whose 
uneven lines are indicative of the noise presence; the 
detected useful signal and regulator noise. Daubechies [23] 
wavelet was used as a basic one.

The AVR and ASR settings of DG plant generator 
are optimized using the genetic algorithm (GA) with  the 
following quadratic criterion [9]:

		  min )d(
0

2


 jeJ 		  (22)

where )()()(  jDjDje MD  – mismatch between 

the desired set of values DD (jω)  and model set )( jDM  

of characteristic polynomials; ω – actual frequency value 
from a range [0; Ω] determined by the system 'bandwidth'. 
Newton's or Butterworth polynomials can be used as 
desired polynomials.

Optimization criterion (22) has a large number of local 
extrema, consequently, it is advisable to use the genetic 
algorithm to search for  a global minimum in the presented 
task. This algorithm represents an optimum search 
technique based on the mechanisms of natural selection 
and inheritance. The main idea of GA was first proposed by 
J. Holland in 1975 [24]. This idea was further developed in 
the works by his followers: Goldberg and de Jong [25, 26].

Because the mismatch value      ωImωReω jje   
is a complex one, it is difficult to minimize functional (22). 
Therefore, it is advisable to use linear convolution:
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Fig. 8.  Structural scheme of the fuzzy control system of AVR and ASR of the DG plant: FS - frequency sensor; EW - excitation 
winding; SG - synchronous generator; T - turbine; VT - voltage transformer.
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condition. This system with a self-tuning unit is a system 
of fuzzy logic inference with modules of identification and 
harmonized tuning of AVR and ASR (Fig.9) [12, 13]. The 
self-tuning unit consists of an identification and modeling 
module and a module of harmonized tuning which allow it 
to form a knowledge base for the fuzzy control system of 
AVR and ASR settings in different operating conditions of 
the DG plant.

V. The modeling results

Modeling was carried out for the power system shown 
in Fig. 10. In the power system in question, there are two 
mini hydropower plants with a capacity of 24 MW each, 
operating for the industrial lumped load (timber processing 
facilities) connected at nodes 1 and 2. The facilities 
operate in one shift, and in the evening peak hours in the 
EPS, each generator supplies 15 MW to the receiving 
system (node 3). The network is implemented via flexible 
symmetrical electrical pathways [28]. Tripping of line 1-3 
was considered as an emergency condition.

The post-emergency conditions meeting the stability 
constraints using the set and shortest paths that are 
calculated with equations (14) and (18) are shown in Fig.11. 
The initial loading condition of the DG plant generators is 
represented by a point with coordinates Y0 = [20   20]T; the 
calculation of the operating conditions meeting the stability 
constraints using the set path is represented by point  
YL1 = [12,9 20]T, and with the shortest path –  
YL2 = [16,56   16,45]T ; additional reduction in 
generator power that ensures the necessary stability 
margin  corresponds to the points YZ1 = [10,8   17,85]T ; 
YZ2 = [10,8   17,85]T (Fig. 11).

The multiple computer-aided experiments indicate that 

The input parameters of the fuzzy control system are the 
actual values of voltage Ug, rotor speed ωg, and powers Pg,Qg 
of DG plant. The fuzzy control system determines AVR 
and ASR tuning coefficients that are optimal for a current 

Base of fuzzy 
variables Rules base

Knowledge base

Inference block Block of 
defuzzification

Block of 
fuzzification

The identification and 
modeling module

The matched tuning 
module

AVR and ASR 
settings

Fuzzy controller

The automatic tuning unit

gU

gω
gg Q P ,

Fig. 9. The block diagram of the fuzzy control system with self-
tuning unit.
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Fig. 10. Diagram of the considered power system.

Fig. 11 Calculation of operating conditions meeting the stability constraints, using limit load equations.

a) b)
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used to determine the parameters of the regulators for three 
loads of the generators (minimum load, average load, and 
maximum load). These parameters were then used to build 
a rule base for the fuzzy control system. 

The modeling results show that without AVR and ASR, 
disconnection of one line causes instability of generators. 
The corresponding oscillogram of generator rotor speed for 
DG plant 1 is shown in Fig. 12. This is due to the relatively 
low power of the generators and the low constant inertia 
of their rotors, which require fast and coordinated control.

Modeling involved the calculation of the DG plants 
operating conditions meeting the stability constraints 
for the case of a short circuit on line 1-3, which occurs 
in electric power system, and its disconnection by relay 
protection in 0.3 s. When DG plants operate without 
regulators, disconnection of one line causes stability loss 
in the system. To ensure stability in the post-emergency 
conditions, it is necessary to reduce the power of the DG 
plant generators. In this case, the correctness of DG plants 
AVR and ASR settings influences greatly the quality of the 
system dynamic transition. As an example, oscillograms of 
generator speed and active power of DG  plant 1 are given. 
They indicate a negative effect of non-harmonized settings 
of regulators on the quality of the transient process (Fig. 
13).

Harmonized settings of AVR and ASR and their change 
in different operating conditions of generators considerably 
improve the quality indices of transient processes. The 
corresponding oscillograms of voltage, frequency, and 
power of the DG plants for the case of short circuit and 
tripping of line 1-3 are shown in Figs. 14 and 15. The main 
advantage of the change in the AVR and ASR settings in 
different operating conditions is a decrease in oscillation, 
overshoot and time of the transient process for voltage, 
frequency, and power of the DG plant, which ensures a 
qualitative dynamic transition when generator power is 
reduced in the post-emergency conditions.

the use of the limit load equations and starting algorithm 
based on minimization of functional residuals makes it 
possible to calculate the required boundary value of the 
stability region. 

Additionally, the MATLAB-based modeling was 
carried out given the models of  AVR and ASR defined with 
the following complex transfer factors:
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where kp, ki, kd – ASR tuning coefficients; k0u, k1u, k0ω, and 
k1ω – tuning coefficients for AVR adjusting channels.

A detailed description of the used model of regulators is 
given in [9, 12, 13]. The method of harmonized tuning was 

Fig. 12 Oscillogram of generator rotor speed of the DG plant 1, 
without AVR and ASR when line 1-3 is disconnected

Fig. 13. Oscillograms of generator rotor speed (a) and active power (b) of DG plant 1 for non-harmonized AVR and ASR settings 
(the operating conditions meeting stability constraints are  calculated using the shortest path).
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Fig. 14. Oscillograms for voltage, frequency, and power of DG plants in the case of tripping line 1-3 (the operating conditions 
meeting the stability constraints are calculated using the set path): 1 – without changes in the AVR and ASR tuning coefficients; 
2 – using a fuzzy controller that changes the  AVR and ASR settings.
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Fig. 15. Oscillograms for voltage, generator rotor speed deviation and power of DG plants in the case of tripping line 1-3 (the 
operating conditions meeting the stability constraints are calculated by the shortest path): 1 – without changes in the AVR and ASR 
tuning coefficients; 2 – using a fuzzy controller that changes the AVR and ASR settings.
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Microgrid Management and EV Control Under 
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[18]	Yuri N. Bulatov, Andrey V. Kryukov, Konstantin V. 
Suslov, "Solving the flicker noise origin problem by 
optimally controlled units of distributed generation", 
Proceedings of International Conference on 
Harmonics and Quality of Power (ICHQP) 2018, pp. 
1-4, 2018.

[19]	A.M. Kontorovich, A.V. Kryukov, “The use of 
equations of limiting regimes in problems of control 

VI. Conclusion

The paper presents the methods for calculating the 
operating conditions meeting the stability constraints 
based on the limit load equations that can be used in 
the emergency control to be performed by distributed 
generation plants. A fuzzy control system is proposed to 
control the parameters of the DG plant regulators. The 
knowledge base of this system allows the formation of a 
self-tuning unit based on the application of AVR and ASR 
harmonized tuning technique using wavelet transform and 
genetic algorithm. 

Based on the performed calculations and computer 
modeling, the following conclusions can be drawn:

1.	 The post-emergency conditions meeting the stability 
constraints can be effectively calculated using the limit 
load equations with the aid of a starting algorithm 
that enables the operating condition to reach the near 
boundary of the stability region.

2.	 Harmonized tuning of generator regulators provides a 
good quality of dynamic transition along the set path 
when DG plants generator power is reduced in post-
emergency operating conditions.

3.	 Application of fuzzy algorithms to control  AVR and 
ASR settings considerably enhances the quality of 
voltage, frequency and power transient processes when 
the power of DG plant generators is reduced in the 
post-emergency conditions.

References

[1]	 Innovative Power Engineering - 21 / Ed. V.M. 
Batenin, V.V. Bushuev, N.I. Voropai, Information 
Center Energia, Moscow, 2017, 584 p. (in Russian)

[2]	 N.I. Voropai, Z.A. Stychinsky, Renewable energy 
sources: theoretical foundations, technologies, 
technical characteristics, economics, Otto-von-
Guericke-Universität, Magdeburg, 2010, 223 p.

[3]	 N.I. Voropai, V.G. Kurbatsky, N.V. Tomin [and 
others], Complex of inteligent tools for the prevention 
of major accidents in power systems, Nauka, 
Novosibirsk, 2016, 332 p. (in Russian)

[4]	 K. Suslov, N. Solonina, V. Stepanov, “A principle of 
power quality control in the intelligent distribution 
networks”, in Proc. International Symposium on 
smart electric distribution systems and technologies. 
(EDST 2015), 2015, pp. 260-264.

[5]	 I.Z. Gluskin, B.I. Iofyev, Emergency automation in 
power systems, Znak, Moskow, T.1, 2009, 568 p. (in 
Russian)

[6]	 I.Z. Gluskin, B.I. Iofyev, Emergency automation in 
power systems, Znak, Moskow, T.2, 2011, 528 p. (in 
Russian)

[7]	 A.V. Kryukov, Limiting regimes of electric power 
systems, Irkutsk: IrGUPS, 2012, 236 p. (in Russian)

http://esrj.ru/


Energy Systems Research, Vol. 2, No. 1(5), 2019Yu. N. Bulatov, A. V. Kryukov 

83

of power systems”, Izv. Academy of Sciences of the 
USSR, Energy and transport, No.3, pp. 25-33, 1987. 
(in Russian)

[20]	A.M. Kontorovich, A.V. Kryukov, Yu.V. Makarov, et 
al., Methods for calculating on the computer of the 
sustainability of complex energy systems, Irkutsk: 
Irkutsk University Press, , p. 89, 1988.

[21]	B.I. Ayuyev, V.V. Davydov, P.M. Erokhin, 
“Optimization model of limiting modes of electrical 
systems”, Electricity, No.11, pp.3-11, 2010. (in 
Russian)

[22]	V.I. Tarasov, Theoretical bases of the analysis of 
the steady-state regimes of electric power systems, 
Nauka, Novosibirsk, 2002, 344 p. (in Russian)

[23]	I. Dobeshi, Ten lectures on wavelets, RHD, Moskow, 
2001, 464 p. (in Russian)

[24]	J.H. Holland, Adaptation in Natural and Artificial 
Systems, Cambridge, MA: MIT Press, 1975, 183 p.

[25]	D.E. Goldberg, “Simple genetic algorithms and the 
minimal deceptive problem”, Genetic Algorithms 
and Simulated Annealing. Chapter 6, Los Altos, CA, 
Morgan Kauffman, pp. 74-88, 1987.

[26]	D.E. Goldberg, Genetic algorithm in search, 
optimization and machine learning, MA: Addison-
Wesley Longman Publishing Co., 1989, 322 p.

[27]	V.V. Bushuev, Dynamic properties of electric power 
systems, Energoatomizdat, Moskow, 1987, 120 p. (in 
Russian)

[28]	A.M. Semchinov, Conduits of industrial enterprises, 
Energy, 1972, 200 p. (in Russian)

Yury Bulatov is Head of the 
Department of Power Industry and 
Electrical Engineering at Bratsk State 
University, Russia. He graduated from 
Bratsk State University in 2007. Yury 
Bulatov received his degree Candidate 
of Technical Sciences from  Irkutsk 
State Transport University in 2012. His 
research interests include modeling of 
power and control systems, modeling 
and control of electric power system 
operating conditions; power grids; 
smart grids.

	

Andrey Kryukov is Professor of 
the  Transport Electric Engineering 
Department at Irkutsk State Transport 
University, Professor of the  Power 
Supply and Electrical Equipment 
Department at Irkutsk National 
Research Technical University, Russia. 
He graduated from East Siberian 
Technological Institute in 1974. 
Andrey Kryukov received his degrees 
of Candidate of Technical Sciences 
from Leningrad Polytechnic Institute in 
1982 and Doctor of Technical Sciences 
from Energy Systems Institute SB 
RAS in 1997. His research interests are 
modeling and control of electric power 
systems and power supply systems of 
the railroads; smart grids.

http://esrj.ru/

	Prevention Of Outages In Power Systems  With Distributed Generation Plants
	I. Introduction 
	II. Problem statement
	III. Methods for determining post-emergency operating conditions meeting stability constraints 
	IV. Dynamic transition in the case of reduction in generator power 
	V. The modeling results 
	VI. Conclusion 


