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Abstract — This paper presents an algorithm developed 
and implemented in software to calculate the normal 
steady state of an electrical network based on 
jointly solving a system of the nodal power balance 
equations using the Newton – Raphson method and 
the heat balance equation for overhead conductors. 
The algorithm allows considering the resistance of 
overhead conductors as a function of the magnitude 
of current in the conductors of various voltage levels 
based on the calculation of their temperature. The 
improved expressions for determining the coefficients 
of the heat balance equation for a conductor are 
obtained subject to the actual environment parameters 
(atmospheric pressure, air temperature, etc.), which 
were calculated by V.V. Burgsdorf and recommended 
by the regulatory documents for normal values of air 
parameters. Consideration of the actual temperature of 
overhead conductors also allowed improving the value 
of the conductor sag in the span and expanding a set 
of inequality constraints in the calculation of feasible 
steady states of electrical networks.

Index Terms — conductor heat balance equation, 
conductor state equation, conductor sag in the span, 
feasible steady state, overhead line resistance, normal 
steady state.
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components.
The current conditions of electrical network operation 

give rise to new information opportunities for improving 
the accuracy of mathematical description of network 
components.

One of the directions for improvement of the models 
of the electrical network components and, as a result, the 
parameters of its steady states is to consider the influence 
of the actual temperature of overhead conductors on 
the parameters of network components. The conductor 
resistance and sag in the span are highly sensitive to 
changes in the conductor temperature.

The temperature and resistance of conductors are 
known to depend on their current load and a number of 
environment parameters, such as wind speed and direction, 
air temperature and pressure, and solar radiation intensity. 
This dependence can be represented by the conductor 
heat balance equation. Dependence of the conductor sag 
on temperature can be represented by the conductor state 
equation.

Most present-day software for the calculation of 
electrical network steady states does not include the heat 
balance and conductor state equations [11, 36, 39, 40, 51-
55, 66, 67] The temperature of overhead conductors in them 
is often set equal to either the normalized value of 20°C or 
the air temperature [1, 5, 10, 16] This simplification makes 
it impossible to consider the actual temperature condition 
of conductors and results in erroneous determination of the 
steady state parameters of electrical networks.

At the same time, numerous theoretical [2,6-8,10,12-
14,43,44,59-62,64,65] and practical [3,17-22,45-48] 
methods have been developed to determine the conductor 
parameters with varying degrees of accuracy subject to 
the actual temperature condition. Moreover, in most cases, 
these methods are not considered in the existing algorithms 
for steady state calculation.

Note the method described in [2], in which a quadratic 
approximation of the conductor heat balance equation is 
applied to determine the conductor temperature, and the 
approximation coefficients must be determined for each 

I. Introduction

The current conditions of electrical network operation 
give rise to new information opportunities for improving 
the accuracy of mathematical description of network 
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specific value of air temperature changing in a wide 
range. In this case, a large array of the coefficients for 
each conductor brand must be stored and processed in the 
computer memory, which is irrational from the software 
point of view.

Expressions and, for some conductors, available 
numerical values of the adjusting coefficients to the 
heat balance equation, which are difficult to determine 
due to the complexity of considering many unstable 
natural factors such as the degree of air pollution, the 
angles of sun rays slope and wind attack, the duration 
of sunny and cloudy weather, etc., are proposed in 
[3,6-9,12-15,27-34,49,50,59-62,64]

When determining the conductor sag in the span, in most 
cases its temperature in the state equation is also taken into 
consideration approximately. It is either set by a required 
value, or equated to the air temperature [3,7,14,32,37]

At present, the algorithms for calculating normal steady 
states in 0.4-110 kV distribution networks, given the actual 
temperature of overhead conductors, which is determined 
by numerically solving the heat balance equation as in 
[3], are proposed only in [7,13,63] Due to the topological 
features of distribution networks, the algorithms have 
simplifications and a limited area of application. Their 
application to networks of higher voltage classes requires 
consideration of a number of additional factors analyzed in 
the proposed paper.

There is also no known algorithm, besides the one 
developed by the authors of this paper, for calculating the 
feasible steady state of an electrical network, which takes 
into account the conductor sag in the span along with other 
parameters of overhead conductors.

This paper presents an algorithm implemented in the 
software for calculating the normal steady states of electrical 
networks of different voltage classes. The algorithm was 
developed by jointly solving a system of nodal power 
balance equations, which is the heart of the algorithm 
[40,42], and the conductor heat balance equation, which 
was solved analytically by the Newton method [23-26] We 
also propose an algorithm for calculating the feasible steady 
states of electrical networks by jointly solving the normal 
steady state equations and the conductor state equation, 
which is accurately solved by Cardano's formulas [38]

For the first time in the practice of calculating the 
feasible steady states, the conductor sag in the span is 
considered as an additional inequality constraint imposed 
on the steady state parameters, which allows expanding the 
list of “traditional” inequality constraints and increasing 
the calculation accuracy of steady feasible, optimal and 
heavy states of power systems, when it is necessary to 
calculate the state variables as accurately as possible.

The proposed algorithms for calculating the steady 
states of electrical networks are implemented in the certified 
software SDO-7 (developed at Melentiev Energy Systems 
Institute of SB RAS) [41] and have been extensively tested 
on some overhead transmission lines and calculation 

schemes of real power systems of various sizes in the 
Irkutsk region [25, 38,56,58]

II. Methodology For Calculating Steady State Of 
An Electrical Network

1. Determination of temperature and resistance of 
overhead conductors 

The unit resistance of an overhead conductor subject to 
its temperature Tcon is determined by the known expression:

 )]([
)()

20T1rr conT200conT(0
-×+×= a  	 (1)

where  
)(200T r,a  is the temperature coefficient of 

conductor resistance and its unit resistance at Tcon = 20°C.
The algorithm for calculating Tcon suggests analytically 

solving the algebraically transformed “traditional” 
nonlinear quadratic equation of the conductor heat balance, 
which is recommended by the regulatory documents [9].

The algorithm for calculating Tcon suggests analytically 
solving the algebraically transformed “traditional” 
nonlinear quadratic equation of the conductor heat balance, 
which is recommended by the regulatory documents [9]:
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,   conk dW ××= n1.12, conk dW ××= n55.03,   
is the convective heat transfer coefficient at a wind 
speed of v < 1.2 m/s, v ≥ 1.2 m/s and the wind direction 
perpendicular to the conductor, at v ≥ 1.2 m/s and 
the wind direction along the conductor, respectively, 

 )m/(W °С×   conПr dqQ ×××= e100  is the solar radiation 
power,  )m/(W °С× ; dcon is the conductor diameter, cm; 

 Пe  is the absorption coefficient equal to the radiation 
coefficient  6.0== beП ; q is the mean monthly total 
(direct plus reflected) solar radiation power taken on the 
basis of the observed data of meteorological stations,  
W/cm2, or, in the case of their absence, assigned equal to 

  ][ 07,0;0q = 2/ cmW  in the winter and summer periods.
As a result of algebraic transformations 

and replacement of the variables in expression  
(2):  )Z3(UI ijijij ×= , where Zij, Uij is the impedance 
and the voltage drop magnitude in a conductor that is equal 
to the magnitude of difference in the vectors of nodal voltages 

 ji UU - , Ohm, V, respectively; the initial quadratic 
equation (2) of form  )()( n,Q,T,TfTI rвconconij =  

,
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is transformed into the sextic equation of form 
 )( вrвijвcon Р,,Q,T,UfTTT nD =-= , which shows the 

dependence of difference in conductor and air temperatures 
on the conductor voltage drop and actual environment 
parameters.

It is worth noting that the environment parameters 
additionally include the actual value of atmospheric 
pressure that differs from its standard value equal to 
Pв=760 mm Hg, traditionally applied in the regulatory 
documents [9] 

The current atmospheric pressure value can be taken 
into account by the mathematical transformation of the 
criterion equations of convective heat exchange, which 
are the basis for determining the convective heat transfer 
coefficient in the conductor heat balance equation 
[27,29,35,36], given their actual value of Pв ≠ const

In the expanded form, the transformed heat balance 
equation is the transcendent and algebraic equations (3), 
(4) for a wind speed v < 1.2 m/s and v ≥ 1.2 m/s with its 
direction perpendicular to the conductor: 
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The other coefficients in (3), (4) are the same and 
determined as follows:
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inductive impedance of a conductor, Ohm/m

At a wind speed of v > 1.2 m/s with its direction along 
the conductor, the coefficient g1 in (4) is replaced with g2, 
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Expressions (3), (4) are the higher-order equations 
and solved by the Newton method with the low required 

accuracy equal to  9T 10-=Dx  given in advance.
The experimental MAPLE-program was used to 

investigate the structure and properties of the coefficients, 
roots and first derivative of the equations for a number of 
conductors of various brands. 

The performed studies have showed that the 
transcendent equation (3) has five roots at any combinations 
of its parameters Uij, Tв, Qr, v, Pв, , the algebraic equation 
(4) has six roots. At all the combinations of the parameters, 
both equations have the only positive real root that has 
a physical meaning and is accepted as the solution. The 
results of the studies are presented in Paragraph III.1.

2. Determination of the conductor sag and length in the 
span of an overhead line

For the first time, the algorithm for determination of 
mechanical parameters of overhead line conductors (the 
sag and length of conductors in the span) involves solving 
the conductor state equation analytically as distinct from 
other known algorithms suggesting solving it numerically: 

 (5) 
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where α, E are the temperature coefficient of the linear 
expansion of conductor material, degrees-1 and modulus 
the conductor elasticity, Pa, whose values are taken in 
accordance with the data of reference books; l ≠ lcon, where 
l, lcon are the span length and the conductor length in the 
span, m.

The parameters with the subscript “m” in expression 
(5) correspond to the known initial climatic conditions, 
according to which the conductor is affected by the 
highest permissible tension  permm σσ = . The conductor 
temperature is taken equal to the lowest air temperature of 
Tcon,m = Tв,m = -40°C, there are no wind and icy spots. The 
conductor is affected by its own weight of  1m gg = . The 
values of  ,   permσ 1g  are taken in accordance with the data 
of the regulatory documents.
The parameters with the subscript “n” correspond to the 
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design climatic conditions, under which there are no icy 
spots,  m/s, .  2.1£n 1n gg =  The conductor temperature 
is not equal to the air temperature Tcon,m = Tв,m and is 
determined by solving the conductor heat balance equation 
during power flow calculation.

Equation (5) is cubic with respect to σn and solved by 
Cardano’s formulas, whose application makes it possible to 
obtain an accurate solution by meaпs of simple arithmetic 
operations: add, subtract, multiply, divide. 

The structure and properties of equation (5) were 
studied by the example of a number of conductors of 
various brands using the experimental MAPLE-program. 
As a result of the studies, the equation for any combinations 
of its parameters proved to have a positive discriminant and 
three roots. In this case, in accordance with [57], among 
the roots of the equation there is one real root that has a 
physical meaning, which is taken as the solution. 

After equation (5) is solved and σn is determined, the 
conductor sag and its length in the span are determined 
from expressions (6):

, .  (6) 
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The experimental program was also applied to study the 
influence of the actual temperature of overhead conductors, 
which was taken into account in the state equation, on the 
conductor sag and its length in the span. 

The findings indicate that adjustment of the sag, 
in comparison with the situation, when the conductor 
temperature in the equation was taken equal to the air 
temperature, is sizable and can exceed 30%. Adjustment of 
the conductor length in the span does not exceed 1% and 
can be neglected. The results of the studies are described 
in Paragraph III.2.

3. An algorithm for calculating the normal steady state 
of an electrical network

The conductor heat balance equation (2) included in the 
“traditional” algorithm for calculating the normal steady 
state of an electrical network as one of the additional 
points improves the accuracy of determining electrical 
parameters of overhead line conductors: their temperature 
and resistance, and hence, the steady state parameters of an 
electrical network.

To do this, in the proposed calculation algorithm, the 
Jacobian matrix elements should be adjusted by inclusion 
of additional components, which are a derivative of the 
implicit function of the conductor resistance with respect 
to the steady state parameters (nodal voltage magnitudes 
and phases):

  (7) 
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where s is the branch containing an overhead line conductor. 
Expression (7) is a derivative of the conductor heat balance 

equation with respect to the steady state parameters. 
The proposed improved algorithm for calculating the 

normal steady state of an electrical network differs from 
its “traditional” version in two new additional blocks: 
determination of the temperature and resistance of overhead 
line conductors by analytically solving the conductor heat 
balance equation (2) and calculation of the derivative of 
the conductor resistance with respect to the steady state 
parameters (7).

4. An algorithm for calculating the feasible steady state 
of an electrical network

The conductor state equation (5) included in the 
"traditional" algorithm for calculating the feasible steady 
state of an electrical network increases the accuracy of 
determining the mechanical parameters of overhead 
conductors: the conductor sag and its length in the span, as 
well as the feasible steady state parameters of an electrical 
network.

To determine the feasible steady state, the proposed 
algorithm must take into account the conductor sag as an 
additional inequality constraint imposed on the steady state 
parameters Us: 

  (8) 
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where  maxs,,mins, ff  are the minimum and maximum sag 
values. 

For the functional relation ƒs(Us), it is also necessary 
to determine the derivative of the complex function of 
equation (5) at each iteration of feasible steady state 
calculation:
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where the first multiplier is the derivative of the explicit 
function  )( ,nconn Tσ  of expression (5), the second multiplier 
is the derivative of the explicit function  )U(r s)n,conT(0  

of the equation of the conductor heat balance (2) that is 
determined in the calculation of the normal steady state.

The developed algorithm for calculating the feasible 
steady state differs from its “traditional” version in 
three additional blocks: calculation of the normal steady 
state of electrical networks in accordance with the 
algorithm described in paragraphs 1-3, determination of 
the mechanical parameters of overhead conductors by 
solving the conductor state equation (5) and inclusion of 
the complex function derivative of the conductor sag with 
respect to the steady state parameters (9).

III. Testing the approaches and algorithms

1. A numerical study on the properties of the conductor 
heat balance equation

The properties of the conductor heat balance equation 
were studied for some conductor brands. 

Table 1 presents the values of the equation 
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roots that were calculated for the АС-120/27 
conductor at the following environment parameters: 

 , ,  m/s and  m/s  °С20Tв = 0Qr = 2.1£ν 5ν =  with 
the wind direction perpendicular to the conductor. In the 
calculations, the conductor length was taken equal to  
lij = 2000 m, the current load corresponded to the maximum 
permissible value of Icon, perm = 375 A the table presents the 
values of the conductor linear voltage that correspond to 
Icon, perm at v ≤ 1.2 m/s and v = 5 m/s. The equation roots 
selected as a solution are given in bold type. 

Similar calculations performed for some other 
conductors of various brands at different combinations of 
currents (voltage drop) in the conductors and environment 
parameters have showed that the number and structure of 
the equation roots, as well as the nature of the relations 
themselves are preserved at any combinations of the 
parameters studied. In this case, the equations have a real 
solution at the conductor overcurrent equal to .

2. Impact of the actual temperature of conductors on 
their mechanical parameters 

The impact of the actual temperature of overhead 
line conductors, which is taken into consideration in the 
conductor state equation  ,  )( вn,con TT ¹  on the values of the 
calculated mechanical parameters: ƒ and lnp in comparison 
with the “traditional” situation when Tcon = Tв is shown 
in table 2 by the example of the АС-150/19 conductor. 

The calculations were performed on the assumption of 
no-wind conditions and absence of icy spots: v < 1.2 m/s,  
γn = γ1, at an air temperature of Tв = 20°C and a span length of  
l = 300 m. The conductor temperature, which was 
preliminarily determined by solving the heat balance 
equation, changed in a range of Tcon,n,i = (30, 40, 50, 60, 70)°C.

The Table presents the improved mechanical parameters 
Δƒ, Δl of the conductor as a result of the adjustment of its 
temperature from Tcon,n = Tв = 20°C to Tcon,n = Tcon,n,i.

The data of the Table show that at the maximum 
overheating of the АС-150/19 conductor above the 
air temperature from Tcon,n,i = Tв = 20°C to the value 
that is maximum permissible in terms of heating  
Tcon,n,i = 70°C, the conductor sag improvement reaches  
Δƒ = 108 cm = 34.5%.

The adjustment of the conductor length in the span is 
negligible and is equal to Δl = 7 cm = 0.02%.

3. Testing of the algorithm for calculating the normal 
steady state of an electrical network

The improved algorithm for calculating the normal 
steady state of an electrical network, which takes into 
consideration the analytically solvable equation of the 
conductor heat balance, was tested on 10 real electrical 
networks of various dimensions in the Irkutsk Region. 
For testing, the results of two options of calculations 
were compared for each considered scheme: at a constant 
conductor temperature equal to the air temperature and 
the conductor temperature obtained by solving the heat 
balance equation. The calculation schemes had different 
current loads of overhead lines, which made it possible to 
divide them into two groups - heavily loaded and lightly 
loaded. The values of the conductor temperature for the 
two calculation options and the total active power losses 
were compared for each scheme in the first or second 
group.

The values of the conductor temperature and the 
total active power losses were compared for the air 
temperature ranging from -20°С to +40°С. The results 
of numerous calculations are compiled in Table 3, 
with indication of the conductor overheating values 
ΔT calculated as a difference in the conductor and air 
temperatures, the values of relative total active power 

losses %, where ,   100
-

1

12

p

pp
pDd = 1p 2p  are the total 

active power losses in the first and second options, as well 

as the impact of distribution of overhead line parameters 

Table 1. Roots of the heat balance equation for the АС-120/27 conductor at Icon, perrm =375A.

, m/s V Values of equation roots ,°С ,°С 

1.2 709.11  66.59 

5 684.25 
 

31.53 

 

ν ,ijU TD TTT вcon D+=

£ j443.94277.51j1232.6;123.41; ±-±-46.59

=
j1367,55189.07j443.64;243.25

2161.16;;

±±-

- 11.53

Table 2. Mechanical parameters of the АС-150/19 conductor 
versus its temperature.

°С 

 

 

cm 
10 16 0.62 
20 35 1.39 
30 56 2.34 
40 80 3.51 
50 108 6.97 
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Table 3. Values of the conductor temperature and overheating, 
relative total active power losses.

Conditions 
 

Heavily 
loaded 

 

Lightly 
loaded 

 

D of OLP, 

 

D of OLP, 

 

1 2 3 4 5 

, °С 62.9-95.5 40-62.9 - - 

, °С 41.9-75.5 10-37.9 - - 

, % 10.1-35.3 0.2-3 1.48-3.71 2.76-6.78 

 

0Qr = 0Qr ¹

conT
TD
pDd
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(D of OLP) by length on the total active power losses.
The table shows that the improvement (correction) of 

the total active power losses owing to the consideration of 
the conductor temperature varies in a wide range of the 
values and depends on the environment parameters and the 
current load of conductors.

The total power losses are improved most effectively 
in the case of the overcurrent of conductors, whose 
temperature is Tcon = (62,9 - 95,5)°C, and the overheating 
ΔT above the air temperature is within a range of  
ΔT = (41,9 - 75,5)°C. In this case, the improvement in the 
total active power losses is 10.1-35.3%.

The temperature of lightly loaded conductors does not 
exceed Tcon = 62,9°C, and the improvement in losses is 3%.

The impact of the distribution of electrical parameters 
of overhead lines (D of OLP) and the distribution of the 
conductor temperature by length of overhead lines on 
power losses was assessed by dividing the overhead lines 
up to 300 km long into shorter sections (columns 4,5 of 
Table 3).

The impact of the division of the overhead line 
supplying one load was studied with and without regard to 
solar radiation . 

The losses were calculated for the overhead line divided 
into 2, 4, 8, 16 identical sections, each of which was 
modeled by the U-shaped equivalent circuit. The obtained 
total losses were compared with the losses calculated 
without division.

As follows from the table 3, the line division into 
sections decreases the total power losses. For 16 sections, 
the reduction was 6.78% with regard to solar radiation, and 
3.71% without regard to solar radiation (Qr = 0, Qr ≠ 0).

The analysis of the presented findings shows that 
consideration of the actual temperature of overhead 
conductors makes it possible to significantly improve the 
calculation results of network steady states.

The analysis of the proposed improved algorithms 
has showed their performance. Users of the algorithms 
should only add data on the environment parameters and 
the overhead conductor parameters that are included in the 
heat balance and conductor state equations.

IV. Conclusion

The conducted studies made it possible to solve an 
important scientific and technical problem of increasing 
the accuracy of modeling steady states of an electrical 
network and modeling an overhead line, which is one of its 
main elements. The problem was solved by the improved 
algorithms for calculating steady states, which involved the 
determination of electrical and mechanical parameters of 
overhead line conductors, such as conductor temperature, 
resistance, and sag in the span. The electrical and 
mechanical parameters were determined by the improved 
algorithms for solving the heat balance and conductor state 
equations.

The performance of the proposed approaches was 

verified by their testing via the experimental programs 
and the SDO-7 program. The numerical results of testing 
confirm the efficiency of the developed algorithms.
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