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Abstract — The paper focuses on the problem of optimal 
power flow. Minimized production and transmission 
costs were considered to design an optimal power 
flow search method based on the novel two-stage 
optimization procedure that takes into account the 
voltage and power constraints. As a result, the efficient 
optimum search method for the non-convex optimal 
power flow problem is proposed and implemented. 
The efficient L-BFGS-B optimization algorithm is 
employed to allow for the constraints. The stochastic 
modification of the global optimization algorithm of the 
Lipschitz function was used in the first stage to improve 
the L-BFGS-B method. Two illustrative examples on 
the IEEE 118-bus test scheme and real regional grid 
demonstrate the efficiency of the proposed two-stage 
optimization procedure. The possibility of taking into 
account the renewable sources in the proposed optimal 
power flow algorithm is briefly discussed
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proposed method allows taking into account the constraints 
using the L-BFGS-B (Limit memory version of Broyden 
Fletcher Goldfarb and Shanno optimization method with 
Border constraints) optimization algorithm.

The power systems operation optimization under 
various constraints has been fairly well addressed by many 
authors in the literature. On the one hand, many methods 
were designed and applied including the gradient descent, 
Newton method, the interior points method, conjugate 
gradients, and Lagrange relaxation [1-4]. Various artificial 
intelligence (AI) methods have been also widely used 
during the last decades. These are multi-agents systems, 
artificial neural networks, genetic algorithms, evolutionary 
programming, fuzzy logic-based control, particles swarm 
optimization, and many others [5-7]. On the other hand, 
many flexible control strategies have been recently 
proposed to cope with flexible modern power systems with 
renewable generation and storage [8-9]. 

It is worth noting that the efficient optimization of 
power flow remains a challenging problem especially 
for the power systems with a high share of renewables. 
Moreover, unstable low-frequency inter-area oscillations 
[10], caused by high level of renewable energy penetration, 
may have a severe negative effect on the objective function 
of optimal power flow and maximum power transfer. 

The following challenges are under attacks most often:
1. Minimization of energy losses with the following 

control actions:
a. Active and reactive power redistribution;
b. The tap-changers adjustment;
c. The shunt reactors and capacitor banks states’ 

adjustment;
2. Change in overflows on transmission lines due to the 

FACTS devices.
3. Power flow adjustment for the operating conditions to 

meet voltage and flow constraints.
4. Optimization of active power generation according to 

economic criteria.
In this paper, our results [11] are further developed 

based on a new two-stage optimization procedure and the 
L-BFGS-B algorithm, namely:

I. IntroductIon

Optimization of power system operation involves 
the determination of an optimal steady state in terms of 
minimized production and transmission costs. This paper 
proposes a two-stage optimization procedure taking into 
account voltage and power constraints. This is a non-
convex problem as demonstrated below. A method of 
global and local optimum search is suggested to find a 
solution to the optimal power flow (OPF) problem. The 
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1. The global optimization and the local L-BFGS-B 
optimization methods are employed in the new software 
implementation of the proposed method. The flowchart 
of the generalized algorithm is presented in section V.

2. More representative calculations on the same test 
schemes are carried out.
The paper is structured as follows. The problem 

statement is given in Section II. The non-convex OPF 
problem is addressed in Section III. Section IV proposes 
a stochastic global optimization algorithm to improve the 
conventional L-BFGS-B method. Section V describes the 
application of the L-BFGS-B method. Case studies on two 
test schemes are given in Section VI. Section VII describes 
further research, in particular, a study on the possibility of 
including renewable sources in the optimization. Finally, 
Section VIII presents the concluding remarks.

II. Problem statement

The optimal power flow methods most often use only 
one criterion either minimization of generation cost or 
minimization of losses. This paper employs a complex 
optimization criterion and takes into account the cost 
of generation, losses in a grid, and voltage magnitude 
deviation [36]. Generation cost here is understood not 
as actual cost expressed in cash equivalents, but as a 
dimensionless quantity taking into account the loading 
preferences of various generators. As a result, the OPF 
problem is formulated as follows:

  min 𝑓𝑓%𝑝𝑝!, 𝑢𝑢!, 𝑘𝑘"*  (1)
where the objective function f is

 

𝑓𝑓 =#$𝑐𝑐!"𝑝𝑝#!" + 𝑐𝑐!$𝑝𝑝#! + 𝑐𝑐!%( +
!∈'

𝑐𝑐∆)#∆𝑝𝑝*
*∈+

+ 𝑐𝑐,#∆𝑢𝑢-"

-∈.

 

𝑓𝑓 =#$𝑐𝑐!"𝑝𝑝#!" + 𝑐𝑐!$𝑝𝑝#! + 𝑐𝑐!%( +
!∈'

𝑐𝑐∆)#∆𝑝𝑝*
*∈+

+ 𝑐𝑐,#∆𝑢𝑢-"

-∈.

 
  

(2)

The control parameters in the OPF problem (2) are as 
follows: pg, ug, k are the generation of active power, the 
voltage at PU buses and transformer ratios, respectively. 
Here G is a set of generator buses, B is a set of branches, 
N is a set of buses, pgi is the active power of the i-th 
generator, ∆𝑝𝑝!  is power losses on branch j , ∆𝑢𝑢!  is a 
voltage magnitude deviation at bus k.

The objective function is adjusted as follows: i2c , i1c
, i0c  are constants adjusting the generation cost; c∆" is a 
constant which takes into account the transmission losses; 
cu is a constant for voltage deviations on buses.

The constraints on control parameters are as follows:

 

𝑝𝑝!"#"$ ≤ 𝑝𝑝!" ≤ 𝑝𝑝!"#%&, ∀𝑖𝑖 ∈ 𝐺𝐺 
𝑢𝑢!"#"$ ≤ 𝑢𝑢!" ≤ 𝑢𝑢!"#%&, ∀𝑖𝑖 ∈ 𝐺𝐺 
𝑘𝑘!"#"$ ≤ 𝑘𝑘!" ≤ 𝑘𝑘!"#%&, ∀𝑖𝑖 ∈ 𝑇𝑇  

(3)

Here G is a set of generator buses involved in 
optimization, T is a set of transformer branches involved 
in optimization. Assume that the dependent parameters 
∆𝑝𝑝!  are power losses in the transmission lines and ∆𝑢𝑢!  

are voltage deviations on buses. These parameters are 
calculated using the electric network system of equations. 
An original modification of the Newton-Raphson method 
with the selection of an optimal step was involved to 
calculate the power flow. The power flow calculation 
process takes into account other constraints, such as the 
P/Q curves of the generators. In this method, the bus 
voltage equations are written in Cartesian coordinates. 
This method was proposed in  [12] and developed in [13]. 
Load flow equations in Cartesian coordinates are:

 𝑠𝑠 = 𝑓𝑓!(𝑢𝑢), 
Where 𝑢𝑢 = [𝑢𝑢!", 𝑢𝑢#", … , 𝑢𝑢!$, 𝑢𝑢#$]  is the vector 

of real and imaginary parts of bus voltages; 
𝑠𝑠 = [𝑃𝑃!, 𝑄𝑄!, 𝑃𝑃", |𝑉𝑉"|", … , |𝑉𝑉#|", 𝛿𝛿#]  is the vector of 
independent parameters: active and reactive power of PQ-
buses; active power and voltage at PU-buses; voltage and 
phases at slack buses. Electric network equations can be 
written in a matrix form as follows:

  𝑠𝑠 = 	−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑢𝑢)𝑌𝑌𝑢𝑢! .  (4)

The matrix of coefficients Y is formed based on the 
conductivities between buses and shunt conductivities at 
buses [13].

III. nonconvex oPtImIzatIon

The necessary Karush-Kuhn-Tucker conditions are in 
the core of many optimization methods for power systems 
operation optimization. Such necessary conditions can 
guarantee only a locally optimal solution in real-world 
applications such as the non-convex optimum power flow 
problem [14, 15]. It can be argued that the non-convexity 
of the optimization problem is determined by the nonlinear 
dependence on physical parameters (including power and 
voltage), and by the power flow parameters constraints.

The state-of-the-art studies have paid much attention 
to the development of high performance algorithms. Let 
us briefly outline the advances in this field. The nonlinear 
interior point algorithms are proposed in [14, 15]. The 
origin of the non-convexity of the given optimization 
problem is shown in [18, 19] where the limits of power flow 
stability are taken into account. In this case, the stability at 
each iteration of optimization is an additional constraint. 
The convex relaxation is proposed for solving the optimal 
power flow problem in [14, 20]. However, this approach 
may not be suitable for the large dimension schemes. As 
shown in [14], the EPS operation optimization is an NP-
hard problem with the objective function usually assumed 
to be convex [14, 21] for the sake of simplicity. 

Thus, many authors assume that the non-convexity of 
the optimal power flow problem arises only because of the 
need to take into account different constraints, for example, 
constraints imposed by the system operator to control the 
current power flow in EPS. This assumption was studied in 
the framework of this paper. A search for a local optimum 
for the complex networks was made, starting with various 
randomly obtained initial states within the feasible region 
of the power flow parameters.

http://esrj.ru/
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The calculation was carried out on the model of the 
Irkutsk region power system shown in Figure 4. The 
problem was  simplified. In the objective function, we 
took into account only the terms responsible for network 
losses and voltage deviations. As control actions, only 
transformation ratios were used. At each random search 
iteration, random values of the control parameters from the 
feasible region were selected. After that, the power flow 
was calculated. In the case of convergence, the results were 
used as a starting point for local optimization by gradient 
descent algorithm. As can be seen, even in such a simplified 
case, the objective function is not convex.

The values of the objective function in the n-dimensional 
space of the control parameters were obtained, where n is 
the number of the control parameters. For clarity, Figure 
1 shows the values of the objective function in the cross-
section of the two most variable control parameters.

The calculations revealed the presence of several local 
optima. Therefore, to determine the scope of the local 
search it is necessary to employ the methods of global 
optimization. This will be addressed further.

Iv. Global oPtImIzatIon alGorIthm

To find the global optimum, the search for regions of 
the local optimum is performed using the stochastic global 
optimization algorithm of the Lipschitz function (LIPOP), 

based on LIPO algorithm proposed in [22].
Since the discrete changes in EPS control parameters 

are assumed to be continuous, the optimization problem 
(1) can be considered as the optimization problem for the 
Lipschitz function.

In the AdaLIPO algorithm[22], a random sampling of 
points Xi from the feasible region of control parameters 
is made and the lower bound of the function is estimated 
from the closest points (as shown in Fig.2) using the 
Lipschitzness coefficient l:
 𝑥𝑥 → max

!"#..%
𝑓𝑓(𝑋𝑋!) − 𝑙𝑙 ∙ ‖𝑥𝑥 − 𝑋𝑋!‖&,		  (5)

Where Xi is the control parameters vector.

The coefficient is refined by the values of the objective 
function, as the maximum among the test points:

 
𝑙𝑙 = max

!∈#,%∈#,!&%

&𝑓𝑓(𝑋𝑋!) − 𝑓𝑓,𝑋𝑋%-&
.𝑋𝑋% − 𝑋𝑋!.'

 
 

(6)

In order to increase the density of the test points in the 
region with a large gradient of the objective function and to 
reduce the number of tests in the region with small gradient 
values, a random search algorithm with the probability 
depending on the gradient is applied. The power flow is 
calculated only if the random sample pp ∈ [0,1]  is less than 
the relative magnitude of the gradient gi:

  
𝑝𝑝! <

‖𝑔𝑔!‖
min
!∈#

‖𝑔𝑔!‖
. 
 

(7)

Here we call the modification of the LIPO algorithm 
LIPOP (P stands for “probability”). The Jacobian of the 
objective function was calculated in (7) by the numerical 
algorithm using Richardson extrapolation [23, 24].

The solution obtained by the global optimization method 
LIPOP can act as an initial approximation for performing 
local optimization by more accurate methods. Thus, the 
global optimization of the power flow can be carried out 
in two stages. In the first stage, the search is performed for 
the region with the least value of the objective function 
by global search in the feasible region. The second stage 
solves the problem of finding a local optimum with more 
precise methods.

v. aPPlIcatIon of the bfGs methods 
In this paper, the method based on the L-BFGS-B 

algorithm [25-27], which is a development of the BFGS 
method, is proposed as a method for finding a local 
optimum. This method is a quasi-Newton method that takes 
into account the constraints on the control parameters.

In this case, the constraints on power flow parameters 
are allowed for in two different ways. Control parameter 
constraints are taken into account in a standard way in the 
form of boundary conditions: 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 . Constraints on 
dependent power flow parameters are taken into account in 
the form of barrier functions, the values of which will be 
included in the general optimization objective function and 
will be calculated in the process of power flow calculation 

 
 Fig. 1. The values of the objective function, shown by the 

intensity of the color (numerals denote the areas of local 
optima): a) for random search without optimization; b) with 
subsequent optimization.

Fig. 2. AdaLIPO Algorithm illustration.
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at each iteration of the optimization for the fixed values 
of the control parameters. The logarithmic functions are 
proposed to be used as barrier functions by analogy with 
the interior point method:

  
𝐹𝐹(𝑥𝑥) = −'(−𝑏𝑏!(𝑥𝑥)*

"

!#$

, 
 

(8)

where 𝑏𝑏!(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1, . . . , 𝑚𝑚  are dependent parameters 
constraints; m is the number of constraints.

This approach allows us to divide the optimization 
problem into the power flow calculation and the 
optimization problem itself. Due to the decomposition of 
the optimization problem into the power flow calculation 
and optimization, on the one hand, the constraints are 
simplified as follows 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 , on the other hand, in the 
framework of the power flow calculation at each iteration 
we can use complex network models including DC-lines, 
active filters, reactive power compensators, FACTS, and 
other devices.

As a result, the algorithm for finding the local optimum 
by the L-BFGS-B method is as follows:
1. At each step of the iterative process, we have the 

control vector kx , the objective function value f(xk) 
and the gradient of the objective function gk calculated 
at point  kx .

2. The gradient projection method is used to meet the 
constraints 𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 .

3. The quadratic model of function f is calculated as 
follows:

 

𝑚𝑚!(𝑥𝑥) = 𝑓𝑓(𝑥𝑥!) + 𝑔𝑔!" ∙ (𝑥𝑥 − 𝑥𝑥!) +	
 

+
1
2
(𝑥𝑥 − 𝑥𝑥!)" ∙ 𝐵𝐵! ∙ (𝑥𝑥 − 𝑥𝑥!),  

(9)

where Bk is the Hessian approximation obtained by the 
quasi-Newton algorithm L-BFGS [28, 29]. Next, we 
determine a piecewise linear function that coincides in the 
direction with the antigradient and takes into account the 
constraints:
  x(t) = P(xk) – t · gk, l, u (10)

Where

 
𝑃𝑃(𝑥𝑥, 𝑙𝑙, 𝑢𝑢)! = )

𝑙𝑙!, 𝑖𝑖𝑖𝑖	𝑥𝑥! < 𝑙𝑙!
𝑥𝑥!, 𝑖𝑖𝑖𝑖	𝑥𝑥! ∈ [𝑙𝑙!, 𝑢𝑢!]

𝑢𝑢!, 𝑖𝑖𝑖𝑖	𝑥𝑥! > 𝑢𝑢!
 
 

(11)

The next step is the calculation of Cauchy point as 
the local minimum of the model function for the selected 
piecewise- linear direction (as shown in Figure 3):

 
𝑥𝑥! = argmin

"
𝑚𝑚# *𝑥𝑥(𝑡𝑡)., 

 
(12)

The iterative process continues while the change in the 
control vector in the direction of optimization is greater 
than the selected threshold ‖x! − x!"#‖ > 𝜀𝜀 . 

In the process of optimization, there can be situations 
when the power flow does not exist, for example, due to 
the power flow constraints. In this case, it is necessary to 
find the limiting state along the given trajectory and set 
new constraints.

The movement along the trajectory is performed by 
dividing the increments of the vector of the control actions 
in half. The quadratic model (9) in this case is written as:

𝑚𝑚!(𝑥𝑥) = 𝑓𝑓(𝑥𝑥!) + 𝑔𝑔!" ∙ ∆𝑥𝑥 +
1
2
∆𝑥𝑥" ∙ 𝐵𝐵! ∙ ∆𝑥𝑥 

 
(13)

here ∆𝑥𝑥 = !"!!
#$

, 𝛼𝛼 , is the multiplicity of the step division.

 
Fig. 3. Movement in the chosen direction.

 
Fig. 4. Real power grid.
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Fig. 6. Calculation results on the IEEE 118-bus test system.f0 is an  initial value of the objective function in p.u.; fg is the objective 
function after gradient descent in p.u.; flbfgsb is the objective function after L-BFGS-B optimization in p.u. The ordinate axis is a 
serial number in a series of calculations with different initial states.

Fig. 5. IEEE 118 bus test system.
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Fig. 7. Objective function after optimization on the IEEE 118-bus test system. fg is the objective function after gradient descent 
in p.u.; flbfgsb is the objective function after L-BFGS-B optimization in p.u. The ordinate axis is a serial number in a series of 
calculations with different initial states.

 
Fig. 8. Difference between objective functions in gradient descent and L-BFGS-B methods on the IEEE 118-bus test scheme. The 
ordinate axis is a serial number in a series of calculations with different initial states.

 
Fig. 9. Calculation results on Irkutsk region network model without constraints. f0 is the initial value of the objective function in 
p.u.; fg is the objective function after gradient descent in p.u.; flbfgsb is the objective function after L-BFGS-B optimization in p.u. 
The ordinate axis is a serial number in a series of calculations with different initial states.
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The resulting flowchart of the proposed algorithm is as 
follows:
1. Perform global LIPOP optimization restricted by the 

number of iterations:
1.1. Sample randomly control parameters from the 

feasible region according to (7).
1.2 Calculate the objective function (1).
1.3 Calculate the objective function.
1.4 Save points with the lowest value of the objective 

function in the restricted vector of global 
optimization results.

2. Perform local optimization with L-BFGS-B for every 
point from the vector of global optimization results.

3. Select the optimal point from the results of local 
optimization.

vI. case study

The proposed optimization scheme was tested on the 
IEEE 118- bus test system (shown in Figure5), and on the 
model of the Irkutsk region network (shown in Figure 4).

About 10000 series of calculations were performed. 
A random value of the vector of the control parameters 
is selected as a starting point within the feasible range 
where it was possible to calculate the steady state. The 
ordinate axis in the following Figures represents the 
values of the objective function in per units. The abscissa 
axis corresponds to a series of calculations from different 
starting points.

The results with a well-chosen step in the gradient 
descent optimization method on the IEEE 188-bus 
test scheme are quite close to the results of  L-BFGS-B 

 
Fig. 10. Calculation results on the Irkutsk region network model with constraints. f0 is the initial value of the objective function in 
p.u.; fg is the objective function after the gradient descent in p.u.; flbfgsb is the objective function after L-BFGS-B optimization. The 
ordinate axis is a serial number in a series of calculations with different initial states.

Fig. 11.  A scaled plot of calculation results on the Irkutsk region network model with constraints. fg is the objective function after 
the gradient descent in p.u.; flbfgsb is the objective function after L-BFGS-B optimization. The ordinate axis is a serial number in a 
series of calculations with different initial states.
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algorithm (Figure 6), however, the calculation results 
obtained using L-BFGS-B are more stable (Figure 7) and 
on average give a 4% better result (Figure 8).

A more vivid result is observed on the model of real 
electrical networks. If the optimization is performed on 
a model without constraints, the result of the L-BFGS-B 
algorithm is stable and several times better than the 
gradient descent (Figure 9). If the algorithm takes into 
account the constraints on the bus voltage, the application 
of the L-BFGS-B algorithm becomes even more effective 
(Figures 10-11). On a larger scale plot (Figure 11), it can 
be seen that L-BFGS-B method gives adequate results 
with a minimum objective function for almost all initial 
conditions, while the gradient descent for most of the 
initial states only slightly improves the objective function 
relative to the initial one (Figure 11).

This difference in the results can be explained by the 
fact that the model of the real power system has worse 
convergence of the initial state, and the gradient descent 
here is more sensitive to the initial descent step.

The speeds of the optimization algorithms are 
comparable. Thus, in the scheme of a real electrical 
network, the average operating time of the gradient 
optimization method is about 120 msec, and that of the 
L-BFGS-B algorithm is about 500 msec.

vII. further studIes

The development of micro-grids and renewables 
requires total rethinking of the EPS steady-state 
optimization. Wind and solar power plants are the major 
renewable energy sources (RES). The development of 
reliable power systems with high penetration of renewables 
is one of the challenges in modern power engineering. 
Such systems heavily depend on the weather conditions, 
which can be taken into account in the OPF problem in 
two different ways. The first approach is the generation 
forecasting based on the meteorological forecasts. In this 
approach, the optimization problem is divided into the 
classic problem of the optimal state search based on the 
given constraints and the problem of states prediction [7, 
30, 31].  The second approach is based on the probabilistic 
calculation of the optimal power flow. In this case, the RES 
generation is given by the models that take into account the 
time-dependent probabilistic characteristics of generation 
as well as load. This is not only due to the variability of 
the traditional residential and industrial loads but also 
because the load can be active and can be influenced by the 
local RES such as small wind turbines and PVs (so-called 
electricity prosumers load) and storages [8].

The load model is usually given by a normal distribution 
with an average value and a standard deviation. The model 
of the wind power plant uses the Weibull distribution [31] 
to determine the probability of the wind speed, which is 
used to calculate the generation distribution of the wind 
power plant. The power distribution of the solar power 
plant is calculated using the beta-distribution function 

describing the solar irradiance [5, 33].
The probabilistic models of RES can be used to obtain 

the time distribution of generation as the function of time 
and installed generation capacity 𝕡𝕡!"𝑡𝑡, 𝑃𝑃!&.   In this case, 
the objective function 𝑓𝑓(∙)  in (1) is as follows:

! "𝑐𝑐!"𝑝𝑝#!" + 𝑐𝑐!$𝑝𝑝#! + 𝑐𝑐!%& + 𝑐𝑐∆'! ∆𝑝𝑝(
(∈*

+ 𝑐𝑐+! ∆𝑢𝑢," +! 𝑐𝑐#-
-∈.

𝕡𝕡#-"𝑡𝑡, 𝑃𝑃#-&𝑃𝑃#-
,∈/

.
!∈0

 

! "𝑐𝑐!"𝑝𝑝#!" + 𝑐𝑐!$𝑝𝑝#! + 𝑐𝑐!%& + 𝑐𝑐∆'! ∆𝑝𝑝(
(∈*

+ 𝑐𝑐+! ∆𝑢𝑢," +! 𝑐𝑐#-
-∈.

𝕡𝕡#-"𝑡𝑡, 𝑃𝑃#-&𝑃𝑃#-
,∈/

.
!∈0

 

! "𝑐𝑐!"𝑝𝑝#!" + 𝑐𝑐!$𝑝𝑝#! + 𝑐𝑐!%& + 𝑐𝑐∆'! ∆𝑝𝑝(
(∈*

+ 𝑐𝑐+! ∆𝑢𝑢," +! 𝑐𝑐#-
-∈.

𝕡𝕡#-"𝑡𝑡, 𝑃𝑃#-&𝑃𝑃#-
,∈/

.
!∈0

 

 

(14)

The vector of independent parameters in the network 
equations (4) includes the power of RES generation and 
loads, given the corresponding probability distributions:

 

𝑠𝑠 = [𝕡𝕡!(𝑡𝑡, 𝑃𝑃!)𝑝𝑝! , 𝑞𝑞! , 𝕡𝕡",𝑡𝑡, 𝑃𝑃"-𝑝𝑝", 
𝑞𝑞", 𝑝𝑝", 𝑢𝑢", 𝛿𝛿"]# .  

(15)

The optimal power flow calculations take into account 
the probabilities. Such calculations are performed using 
the two-point estimation method proposed by Verbic [34]. 
The essence of this method is as follows. For each value of 
generation and load given by the probability, two optimal 
power flows corresponding to values below and above 
the average are computed. The remaining probabilistic 
variables are selected as the mean value. Based on these 
two points, the vector of control parameters is estimated 
for each probability value.

The calculation of the optimal power flow, considering 
the probabilities, requires a significant number of 
deterministic optimal flow distribution calculations. 
Finding an optimal power flow for a certain time range 
is a more complicated problem. In this case, the dynamic 
optimization problem can be formulated as follows:

 

min 𝑓𝑓(𝑡𝑡!, 𝑇𝑇, 𝑥𝑥) = , 𝑓𝑓"(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝑡𝑡 + 𝑓𝑓#/0𝑥𝑥#!$% − 𝑥𝑥#!&%02,
#!&%

#!
 

min 𝑓𝑓(𝑡𝑡!, 𝑇𝑇, 𝑥𝑥) = , 𝑓𝑓"(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝑡𝑡 + 𝑓𝑓#/0𝑥𝑥#!$% − 𝑥𝑥#!&%02,
#!&%

#!
 

 

(16)

Where t0 is the initial time, T is the optimization time 
horizon, fp is the objective function calculated for each 
moment by the method of probabilistic optimal flow 
distribution, fi is the cost function of the transition from the 
initial state to the optimal one, determined as:

 
𝑓𝑓!(𝑥𝑥) = 𝑐𝑐!' 1, 𝑥𝑥 > 0.

"∈$
 
 

(17)

Thus, the method of deterministic optimization is used 
in each stage of dynamic and probabilistic optimization.

vIII. conclusIon

The paper proposes an efficient two-stage optimization 
procedure based on the stochastic modification of the 
global optimization algorithm of the Lipschitz function 
and the L-BFGS-B method. The L-BFGS-B algorithm has 
a super-linear convergence rate. The complexity of the 
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Energy Systems Research, Vol. 3, No. 1, 2020A.V. Domyshev et al.

60

designed optimization algorithm is O(n2).
The decomposition of the calculation of the optimal 

power flow for the steady-state calculation problem and the 
optimization algorithm itself made it possible to efficiently 
perform optimization without complicating the optimal 
power flow calculation. 

The presented optimization technique was implemented 
in the ANARES software [35]. The calculations on the 
models of the Irkutsk regional network revealed the 
following advantages. In comparison with the gradient 
method, the L-BFGS-B method of local optimization 
does not require to set an optimization step. The global 
optimization makes it possible to reach the global minimum 
of the objective function in a feasible region of the control 
parameters.

Ix. acknowledGments

This research has been carried out within the program 
of fundamental research of Siberian Branch of the Russian 
Academy of Sciences and within the framework of the 
research projects III.17.3.1, III.17.4.2, No. AAAA-A17- 
-117030310442-8, No. AAAA-A17-117030310438–1.
The authors are thankful to anonymous reviewers for their 
useful comments to improve the presentation and quality 
of the paper.

references

[1] Yu. Nesterov, A. Nemirovski, “Interior-point 
aplynomial algorithms in convex programming,” 
SIAM Studies in Applied Mathematics, vol. 13. 1993.

[2] Yu. Nesterov, “Introductory lectures on convex 
optimization: A basic course,” Springer, 2013.

[3] S. Wright, J. Nocedal, “Numerical optimization,” 
Springer Science, 2006.

[4] V.I. Zorkaltsev, “Dual interior points algorithms,” 
Russian Mathematics, vol. 55, no. 4, pp. 26–43, 2011.

[5] J.A. Momoh, “Electric power system applications of 
optimization,” CRC Press, 2008.

[6] J.A. Momoh, R. Adapa, M.E. El-Hawary, “A review 
of selected optimal power flow literature to 1993. I. 
Nonlinear and quadratic programming approaches,” 
IEEE transactions on power systems, vol. 14, no. 1, 
pp. 96-104, 1999.

[7] F. Liu, L. R. Li, Y. Li, Y. Cao, D. Panasetsky, D. 
Sidorov, "Short-term wind power forecasting 
based on TS fuzzy model", In 2016 IEEE PES Asia-
Pacific Power and Energy Engineering Conference 
(APPEEC), pp. 414-418. IEEE, 2016.

[8] Y.Li, L. He, F. Liu, C. Li, Y. Cao, M. Shahidehpour, 
"Flexible voltage control strategy considering 
distributed energy storages for the dc distribution 
network," IEEE Transactions on Smart Grid, vol. 10, 
Issue: 1, Pages: 163 – 172, Jan. 2019.

[9] Y. Li, L. He, F. Liu, Y. Tan, Y. Cao, L. Luo, M. 
Shahidehpour, “A dynamic coordinated control 
strategy of WTG-ES combined system for short-term 
frequency support,” Renewable Energy, vol. 119, pp 
1-11, 2018.

[10] D. Sidorov, D. Panasetsky, and V. Šmádl, "Non-
stationary autoregressive model for on-line detection 
of inter-area oscillations in power systems," 2010 
IEEE PES Innovative Smart Grid Technologies 
Conference Europe (ISGT Europe), Gothenberg, 
2010, pp. 1-5.

[11] A. Domyshev, D. Sidorov, D. Panasetsky, Y. Sun, 
P. Ju, and F. Wu, "Optimal Power Flow Calculation 
Using BFGS-Based Optimisation Scheme," Proc. Of  
2nd IEEE Conference on Energy Internet and Energy 
System Integration (EI2), Beijing,  pp. 1-6, 2018.

[12] Iwamoto, S., Y. Tamura, “A load flow calculation 
method for ill-conditioned power systems,” IEEE 
transactions on power apparatus and systems, vol. 4, 
pp. 1736-1743, 1981.

[13] V.Z.Manusov, O.N.Shepilov, "Express methods 
of analysis of modes for assessing the reliability of 
electrical systems based on the Cartesian coordinate 
system,” SEI, Irkutsk,  pp. 168-175, 1989 (in Russian).

[14] J. Lavaei, S.H. Low, “Zero duality gap in optimal 
power flow problem,”  IEEE Transactions on Power 
Systems, vol.27, no.1, pp. 92-107, 2012.

[15] H. Wei et al. "An interior-point nonlinear programming 
for optimal power flow problems with a novel data 
structure," IEEE Transactions on Power Systems,  
vol. 13, no. 3, pp. 870-877, 1998.

[16] W.M. Lin, C.H. Huang, T.S. Zhan, “A hybrid 
current-power optimal power flow technique,” IEEE 
Transactions on Power Systems, vol. 23,  no. 1, pp. 
177-185, 2008.

[17] Q.Y. Jiang et al. “Power–current hybrid rectangular 
formulation for interior-point optimal power flow,” 
IET generation, transmission & distribution, vol. 3, 
no. 8, pp. 748-756, 2009.

[18] D. Gan, R.J. Thomas, R.D. Zimmerman, "Stability-
constrained optimal power flow," IEEE Transactions 
on Power Systems, vol.15, no. 2, pp. 535-540, 2000.

[19] H.R. Cai, C.Y. Chung, K.P. Wong, “Application of 
differential evolution algorithm for transient stability 
constrained optimal power flow,” IEEE Transactions 
on Power Systems, vol.23, no.2, pp.719-728, 2008.

[20] X. Bai et al. “Semidefinite programming for optimal 
power flow problems,” International Journal of 
Electrical Power & Energy Systems, vol. 30, no.6-7, 
pp 383-392, 2008.

[21] S.H. Low, ”Convex relaxation of optimal power 
flow—Part I: Formulations and equivalence,” IEEE 
Transactions on Control of Network Systems, vol. 1, 
no. 1, pp. 15-27, 2014.

[22] C. Malherbe, N. Vayatis, “Global optimization of 
Lipschitz functions,” In Proceedings of the 34th 
International Conference on Machine Learning, vol. 
70, pp. 2314-2323, 2017.

[23] P. Deuflhard, “Recent progress in extrapolation 
methods for ordinary differential equations,” SIAM 
review, vol. 27, no. 4, pp. 505-535, 1985.

[24] P.L. Fima, “Richardson Extrapolation: The Power of 
the 2-gon,” Mathematics TODAY, 2003. P. 159.

http://esrj.ru/


Energy Systems Research, Vol. 3, No. 1, 2020A.V. Domyshev et al.

61

[25] R.H. Byrd, “A limited memory algorithm for bound 
constrained optimization,” SIAM Journal on Scientific 
Computing, vol.16, no.5, pp. 1190-1208, 1995.

[26] P. Armand, P. Ségalat. “A limited memory algorithm 
for inequality constrained minimization,” Technical 
Report 2003-08, University of Limoges (France) 
2003.

[27] G. Yuan, X. Lu, "An active set limited memory BFGS 
algorithm for bound constrained optimization," 
Applied Mathematical Modelling, vol. 35, no. 7, pp. 
3561-3573, 2011.

[28] D.C. Liu, J. Nocedal, “On the limited memory BFGS 
method for large scale optimization," Mathematical 
Programming, vol.45, no.1-3, pp.503-528, 1989.

[29] J.C. Gilbert, C. Lemaréchal, "Some numerical 
experiments with variable-storage quasi-Newton 
algorithms," Mathematical Programming, vol.45, 
no.1-3, pp.407-435, 1989.

[30] Y. Li, Z. Wen, Y. Cao, Y. Tan, D. Sidorov, D. 
Panasetsky, "A combined forecasting approach with 
model self-adjustment for renewable generations and 
energy loads in smart community,"  Energy, vol. 129, 
pp.216-227, 2017.

[31] V.G. Kurbatsky, D.N.Sidorov, V.A. Spiryaev, N.V. 
Tomin, "The hybrid model based on Hilbert-Huang 
transform and neural networks for forecasting of 
short-term operation conditions of the power system," 
IEEE Trondheim PowerTech, Trondheim, 2011, pp. 
1-7, 2011.

[32] Y. Yuan, J. Zhou, P. Ju,  and J. Feuchtwang. 
"Probabilistic load flow computation of a power 
system containing wind farms using the method of 
combined cumulants and Gram–Charlier expansion," 
IET renewable power generation, vol. 5, no. 6, pp. 
448-454, 2011.

[33] N. Nikmehr, S.N. Ravadanegh, "Heuristic probabilistic 
power flow algorithm for microgrids operation 
and planning," IET Generation, Transmission 
&Distribution, vol. 9, no.11,  pp. 985-995, 2015.

[34] G.Verbic, C.A. Canizares, “Probabilistic optimal 
power flow in electricity markets based on a two-
point estimate method,” IEEE transactions on Power 
Systems, vol.21, no.4, pp. 1883-1893, 2006.

[35] “Software package for power system modeling,” 
[Online]. Available in RUSSIAN: http://anares.ru/
software

[36] Huang C. M. et al., “Comparative study of 
evolutionary computation methods for active–reactive 
power dispatch,” IET generation, transmission & 
distribution, vol. 6, no. 7, pp. 636-645, 2012.

Alexander Domyshev received the 
M.Sc. degree in 1998 from Irkutsk 
State Technical University (ISTU), 
Irkutsk, Russia. Since 1999, he has 
been a researcher at MESI. He is the 
team leader of the ANARES package 
developers (anares.ru). His research 
interests include the optimal power 
flow, power system stability, emergency 
control, application of machine learning 
models to power systems, application 
of artificial neural network models to 
power systems. He is an IEEE Member.

Denis N. Sidorov serves as the Leading 
Researcher of the Operations Research 
Laboratory of Energy Systems Institute 
of Russian Academy of Sciences. He 
received his degrees of Ph.D. in 1999 
and Habilitation (DSc) in 2014. He is a 
Distinguished Guest Professor of Hunan 
University, Changsha, China. He has 
held Vision Engineer Lead position 
at ASTI Holdings Pte Ltd, Singapore 
(2005-2008), Research Fellow at 
Trinity College Dublin, Ireland (2001-
2002) and CNRS, Compiegne, France 
(2003-2004). He is a Senior Member 
of IEEE, Expert of the Russian Science 
Foundation and the Russian Foundation 
for Basic Research. A reviewer of 
Mathematical Reviews and Zentralblatt 
fur Mathematik. Dr. Sidorov is an IEEE 
Chapter Chair of IEEE PES Russia. He 
serves as a Member of the Editorial 
Boards of Renewable and Sustainable 
Energy Reviews. His main research 
interests include machine learning, 
power engineering, image processing, 
numerical methods, and integral 
equations. He is a Professor of the 
Russian Academy of Sciences.

Daniil Panasetsky received the 
B.Sc. and Ph.D. degrees in 2006 and 
2014, respectively, from Irkutsk State 
Technical University (ISTU) and 
Melentiev Energy Systems Institute 
(MESI), Irkutsk, Russia. Since 2009, he 
has been a senior researcher in MESI. 
Since 2014, he has been an associated 
professor of electrical engineering in 
ISTU. His research interests include 
power system stability, emergency 
control, ac/dc converters, and 
application of artificial intelligence to 
power systems. 

 

 

 

http://esrj.ru/
http://anares.ru/software
http://anares.ru/software

	An Improved Two-Stage Optimization Procedure for Optimal Power Flow Calculation
	I. Introduction 
	II. Problem statement 
	III. Nonconvex optimization 
	IV. Global optimization algorithm 
	V. Application of the bfgs methods  
	VI. Case study 
	VII. Further studies 
	VIII. Conclusion 
	IX. Acknowledgments 
	References 


