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Abstract — Steady-state equations play an essential 
part in the theory of power systems and the practice of 
computations. These equations are directly or mediately 
used almost in all areas of the theory of power system 
states, constituting its basis. This two-part study 
deals with a geometrical interpretation of steady-
state solutions in a power space. Part I has proposed 
considering the power system's steady states in terms 
of power surface. Part II is devoted to an analytical 
study of the power surface through its normal vectors. 
An interrelationship between the entries of the normal 
vector is obtained through incremental transmission loss 
coefficients. Analysis of the normal vector has revealed 
that in marginal states, its entry of the slack bus active 
power equals zero, and the incremental transmission loss 
coefficient of the slack bus equals one. Therefore, any 
attempts of the slack bus to maintain the system power 
balance in the marginal state are fully compensated by 
associated losses. In real-world power systems, a change 
in the slack bus location in the marginal state makes this 
steady state non-marginal. Only in the lossless power 
systems, the marginal states do not depend on a slack 
bus location.

Index Terms: distributed slack bus, feasibility region, 
incremental transmission loss coefficient, Jacobian, 
marginal state, normal vector, power flow, power surface, 
power system, slack bus, steady state.
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I. IntroductIon

Steady-state models play a crucial part in the analysis, 
planning, and control of power systems. Therefore, an 
analytical investigation and understanding of steady-state 
equations are essential since they provide qualitative 
insights and facilitate the evolution of power system 
theories and elaboration of faster and more efficient 
algorithms. At present, most publications tend to use 
an algebraic approach. Mathematical expressions and 
equations are efficient tools for a numerical solution but 
are complicated for the qualitative analysis in the case of 
multidimensional systems. At the same time, a geometrical 
consideration allows taking advantage of powerful tools 
of modern geometry and obtaining noteworthy results. 
Part I [1] of the two-part study suggests the geometrical 
interpretation of a set of all the steady-state solutions in 
terms of surface in a power space. Consideration of the 
whole set of power system steady states using power 
surface allows taking advantage of differential geometry 
tools to qualitatively study steady-state models. 

The objective of the present paper is to analytically 
investigate the power surface. This work improves 
upon the early study [2] considering the steady- states 
equations with distributed slack bus. The rest of the paper 
is organized as follows. In Section II, equations of a 
tangent plane and a normal vector to the power surface are 
obtained. Section III investigates the entries of the normal 
vector to the power surface and their specific features in 
marginal states of a power system. It also examines an 
interrelationship between entries of the normal vector 
to the power surface and entries of the normal vector to 
the surface of marginal states. Section IV considers the 
influence of a slack bus location on the marginal states 
through the entries of the normal vector to the power 
surface by the example of a 4-bus power system. Section 
V analyzes the adequacy of the parameters of marginal 
states obtained when using a distributed slack bus to 
assess an actual steady-state stability reserve of the 
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power system in terms of power. Section VI presents the 
conclusions. 

II. tangent Plane to Power Surface

One of the differential geometry tools is tangent planes 
to the surface and their normal vectors. An equation of a 
tangent plane to the power surface is conveniently obtained 
by using nodal steady-state equations in polar coordinates:

  
;          

;          
.          

 

( , ,δ) 0P P VD =

b ( , ,δ) 0bP P VD =
( , ,δ) 0Q Q VD =

 (1)

where P and Q are an injection power vector consisting 
of the active power for buses other than the slack bus and 
the reactive power for PQ-specified buses, respectively; δ 
and V are vectors defined by phase angles for buses other 
than the angle reference bus and voltage magnitude for 
PQ-specified buses, respectively; subscript b refers to the 
slack bus. 

Linearization of (1) gives: 
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Unlike standard linearized equations, which are used 
for steady-state calculations, system (2) explicitly includes 
the linearized equation of active power balance at slack 
bus b. Hence, the augmented Jacobian in (2) is rectangular; 
its number of rows is greater than the number of columns 
by one. According to the theory of linear algebra, rows of 
such matrix are linearly dependent [3]. Consequently, there 
exists a non-zero vector  
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 satisfying the 
following equation: 
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Hence, multiplying the left-hand side of (2) by λT, we 
obtain the following equation:

  
TTλ λ λ 0P P Q

b bdP dP dQ+ + = .  (4)
Expression (4) is the equation of the tangent plane 

to the power surface in the space of the active power of 
the buses and the reactive power of PQ-specified buses. 
Therefore, (4) determines the vector λ as a normal vector to 
the tangent plane, i.e., to the power surface. According to 
(3), the normal vector to the power surface can be obtained 
by specifying  λPb  and solving the set of linear equations:
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in which the coefficient matrix is the transposed power 
flow Jacobian. 

III. Study on the normal Vector to Power Surface

To determine an interrelationship between the entries 
of a normal vector to a power surface, it is convenient to 
use the system power balance equation 
  π 0b k

k b
P P

" ¹

+ - =å , (6)

where π is a system power loss.
The active power of the slack bus and power loss are 

dependent variables. Therefore, differentiation of (6) with 
respect to independent variables (power at specified buses) 
yields:
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where e is the vector of all ones;  π
P
¶é ù
ê ú¶ë û

 and  π
Q

é ù¶
ê ú¶ë û

 are 

vectors of incremental transmission loss coefficients 
(ITLs). In turn, differentiation of (1) with respect to 
independent variables yields:
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where [E] and [0] are identity and zero matrices, 
respectively. In turn, the use of (8) in (9) yields:
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Comparison of (10) with (5) and use of (7) yield: 
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.  (12)

The normal vector to the power surface does not depend 
on a selection of the slack bus because an alteration of the 
slack bus does not change solution to (5) if the entry of the 
normal vector of a new slack bus to set is equal to a value 
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of this entry obtained by solving (5) using the old slack 
bus. Thus, (11)-(12) allow revealing the interrelationship 
between the ITLs obtained by using the new slack bus and 
the old one:

  

π π π
π π
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where  
πb
mP

¶
¶

 and  
πk
mP

¶
¶

 are ITLs obtained by using slack bus 

b and new slack bus k, respectively.
Consider specific features of the normal vector to 

the power surface in a marginal state. According to (5) 
and (11)-(12), the entries of the normal vector can have 
different values. Assume that the normal vector entry  λPk is 
zero at some point on the power surface. According to (11), 

this will only be when  π1 0
kP

¶
- =
¶

, i.e.,

   πλ 0 1P
k

kP
¶

= Þ =
¶

. (14)

Assume that bus k is assigned as a slack bus at this 
point. Then, the adjusted (5) can be represented as follows:
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The matrix in (15) is the transposed power flow Jacobian 
by using slack bus k, and condition (15) determines its 
singularity, i.e., a marginal state. According to (14), in 
the marginal state, the incremental transmission loss 
coefficient of the slack bus is equal to one, which is why 
any attempts of the slack bus to maintain the power system 
steady state are compensated by associated power loss. The 
inability of the slack bus to maintain the steady state even 
at some buses determines the power system marginal state. 
In the marginal state, the slack bus as if loses connection 
to a part or the whole of the power system; it corresponds 
to the absence of slack bus in the computational model of 
steady states with all consequences. 

The interpretation of the marginal state surface in the 
subspace of power at specified buses as the boundary of 
the power surface projection along the axis of slack bus 

active power onto the subspace of power of all other buses 
allows obtaining an interesting interrelationship between 
the normal vector to the power surface in marginal state 
and the normal vector to the marginal state surface. 
According to (14), the slack bus entry of the normal vector 
to the power surface is equal to zero in the marginal state. 
Therefore, in the marginal state, the normal vector to the 
power surface is orthogonal to the axis of slack bus active 
power and will be projected onto the subspace of power at 
specified buses in full size. Consequently, the entries of the 
normal vector to the marginal state surface will be equal to 
the corresponding entries of the normal vector to the power 
surface.

IV. Influence of Slack BuS locatIon  
on margInal State

In the marginal state, in the case of a changing slack 
bus, generally, condition (15) will not be satisfied, unless 
a new slack bus has zero entry of the normal vector to the 
power surface in (5). A simple system with 4 PV buses in 
Fig. 1 allows showing this.

Table 1 indicates the power at buses in MW (the minus 
sign corresponds to generation) and entries of the normal 
vector to the power surface for the base case and also for 
the marginal states obtained by using slack bus 4, and slack 
bus 1. These marginal states are the results of a generation 
increase at bus 2 and a load increase at bus 3. The line 
parameters are Z12 = Z34 = 5 + j10 Ω, Z23 = 20 + j40 Ω, and 
V1 = V2 = V3 = V4 = 110 kV.

Consider the parameters of the marginal state obtained 
by using slack bus 4. Since the power transfer through line 
2-3 is associated with loss, slack bus 4 supports the power 
transfer through line 3-4. The marginal state occurs when 
line 2-3 is overloaded. The steady state remains marginal if 
bus 3 is assigned as slack bus since its entry of the normal 
vector to the power surface is also equal to zero in this 
case. However, it will not remain marginal, if the slack 
bus is moved to bus l as its entry of the normal vector is 
not equal to zero and there is a possibility of continuing 
generation increase at bus 2 and load increase at bus 3. In 
the marginal state, the ITLs for bus 4, obtained by using 
slack bus 1 or 2, are equal to one.

The marginal state will be different if slack bus 1 is used 
because it maintains the power system steady state through 
line 1-2 in this case. The ITL for the slack bus increases 
with growth in the power transfer. As soon as it reaches 
one, the load increase at bus 3 becomes impossible. Slack 
bus 1 is unable to maintain the steady state of bus 3 and 4 

Bus 1 2 3 4 
Base Case 

P 20 -50 50 -22.1951 
λP 0.9259 0.9069 1.0231 1 

Marginal states obtained by using slack bus 4 
P 20 -411.77 411.77 -465.27 
λP -1 -0.9794 0 0 

Marginal states obtained by using slack bus 1 
P -118.72 -171.51 171.51 -22.1951 
λP 0 0 1 0.9775 

 

Table 1. A 4-bus power system.

 

1 2 3 4  

Fig. 1. A 4-bus power system.
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in this marginal state. The marginal state remains marginal 
if bus 2 becomes slack bus, as its entry of the normal vector 
is equal to zero. This steady state will not be marginal if 
the slack bus is bus 4 or 3 since these buses have non-zero 
entries of the normal vector. The marginal values of power 
at buses and system loss in the marginal state obtained by 
using slack bus 1 are smaller than those obtained by using 
slack bus 4. At the same time, the marginal state obtained 
by using slack bus 4 and the steady states in its vicinity will 
be unstable if the dynamic Jacobian is used for the steady-
state stability assessment [4].

The influence of the slack bus location on the marginal 
state can be explained by considering the power surface. 
Each power system steady state corresponds to a certain 
point on the power surface and vice versa. The projection 
of the power surface along the axis direction of the slack 
bus active power onto the subspace of power of all specified 
buses is the power flow feasibility region [1]. The boundary 
of this projection corresponds to a set of marginal states. 
Since the power surface is usually not plane, the points on 
the power surface, which correspond to the boundary of 
such a projection, i.e., marginal state, will be different for 
another slack bus. Therefore, the slack bus change in the 
marginal state makes the steady state non-marginal.

In the case of no resistances in the network in Fig. 1, 
the power system marginal states obtained by using slack 
bus 4 and slack bus 1 will be the same. The base case and 
marginal state parameters for the 4-bus lossless system 
with Z12 = Z34 = j10 Ω, Z23 = j40 Ω are shown in Table II.

In any lossless power system, marginal states remain 
marginal regardless of the slack bus location. It can be 
shown if to consider the following. Firstly, if all the 
resistances are zero, the vector λ = [eT, 1, 0T] will always 
correspond to (3), i.e., it will always be the normal vector 
to the power surface. Secondly, in the marginal state, the 
dimension of a null space of the transposed augmented 
Jacobian (3) is equal to two [5]. Therefore, in the marginal 
state, another normal vector [ , 0, ] 

T
λP

T
λQ  to the power 

surface of the null space of transposed augmented Jacobian 
(3) will correspond to (14)-(15). Hence, in the marginal 
state, vector λ of a linear combination of vectors

  
TT T TT Tλ β ,1,0 λ , 0 , λP Qe é ùé ù= +ë û ê úë û
 (16)

will also be a normal vector to the power surface. Two 
cases are possible when new slack bus k is used. If  λ 0P

k =  , 

then the entries of the normal vector remain unchanged 
in (14)-(15). Otherwise, the normal vector λ (16) with 

 β λPk= -  will also correspond to the power flow Jacobian 
(15) singularity.

The fact that the marginal state does not depend on the 
slack bus location can also be explained by considering 
the power surface of a lossless power system. This power 
surface is plane [1] since it also satisfies the equation

 0k
k
P

"

=å . The points on the plane power surface that 
correspond to the boundaries of its projections along 
the active power axis direction of any slack bus onto the 
subspace of power of specified buses, i.e., the marginal 
states, are the same. Therefore, marginal states do not 
depend on the slack bus location. It is also noteworthy, 
that one side of this plane power surface corresponds 
to aperiodic stable steady states; while the other side is 
unstable ones, i.e., the same point on the power surface 
of the lossless power system corresponds to stable and 
unstable power system steady states [1].

V. dIStrIButed Slack BuS

Several power flow programs use a so-called 
distributed slack bus, i.e., active power is balanced by 
several generators with specified participation factors 
[6]. Participation factors ϑk may be specified according to 
economic reasons, or based on requirements of the primary 
or secondary frequency control, and so on. In this case, a 
dependent variable PS is used for the distributed slack bus, 
which is taken into consideration in steady-state equations 
as ϑk PS with  1k

k
J =å , and the power flow Jacobian is 

represented as follows:
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. (17)

Bus 1 2 3 4 
Base Case 

P 20 -50 50 -20 
λP 1 1 1 1 

Marginal states obtained by using slack bus 4 
P 20 -322.5 322.5 -20 
λP 1 1 0 0 

Marginal states obtained by using slack bus 1 
P 20 -322.5 322.5 -20 
λP 0 0 1 1 

 

taBle 2. 4-BuS loSSleSS Power SyStem.
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Fig. 2. Power ellipse of a 2-bus power system and marginal states
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Matrix (17) includes partial derivatives of active power 
balance equations for all buses, and subscript b refers to a 
reference bus. In the marginal state, this matrix is singular. 
With the left-hand side eigenvector (corresponding to its 
zero eigenvalue) denoted by γ, singularity conditions of 
(17) can be represented as follows: 
   T

kγ γ 0P
k

k SÌ
J = J =å ;  (18)
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T
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0δ
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In turn, (19) can be rewritten as:
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Comparison of (20) with (5) shows that vector γ is the 
normal vector λ to the power surface. Therefore, condition 
(18) can be represented as follows: 
   Tλ λ 0P

k k
k SÌ

J = J =å .  (21)

Thus, the marginal state determined by using the 
distributed slack bus corresponds to such points on the 
power surface at which their normal vectors to the power 
surface λ are orthogonal to the vector of bus participation 
factors for balancing active power ϑ. In the case of a 2-bus 
power system with PV-buses, two points E and F in Fig. 2 
satisfy this condition.

Fig. 2 also shows the marginal states and power flow 
feasibility regions when the slack bus is bus 2 (the points 
A, B and the straight line [ 1

AP , 1
BP ]) or bus 1 (the points C, 

D and the straight line [  2
СP , 2

DP ]). This means that when 
the distributed slack bus is used, the obtained marginal 
states are not on the boundary of the power flow feasibility 
region but inside the region. Therefore, the steady-state 
stability reserve in terms of power, obtained by using the 
distributed slack bus, can be less than the reserve obtained 
by using the single slack bus. Consider, for example, the 
marginal state at point E. Indeed, when the marginal state 
is determined by changing load at bus 1 and using the 
distributed slack bus then, according to the arc OAE of the 
ellipse, at the beginning of the process, the power of bus 
1 will gradually increase to 1

AP  and then decrease to 1
EP

. This means that the marginal state E obtained by using 
the distributed slack bus will be farther in an angle space 
than the marginal state A obtained by using single slack 
bus 2 but nearer in the power space. Usually, the steady-
state stability reserve of a power system is determined in 
terms of power. Therefore, the steady-state stability reserve 
will be assessed more correctly if we use parameters of the 

steady state corresponding to point A, i.e., the parameters 
of the marginal state obtained by using single slack bus 2. 

Consideration of the system power balance equation 
   π 0S

k
k

P P
"

+ - =å , (22)

and use of an approach similar to (7)-(12) allow obtaining 
the following relationship between the entries of the 
normal vector to the power surface determined by using 
the distributed slack bus [5]: 

   πλ 1 λ
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P S
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æ ö¶
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mQ
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¶
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where  πS

mP
¶
¶

 is ITL for bus m determined by using the 

distributed slack bus s, and 
  Tλ λ λS P

k k
k SÌ

= J = Jå .  (25)

Any changes in the distributed slack bus, even in 
marginal state when 
  λ 0S = ,  (26)
do not change the entries of the normal vector to the 
power surface as they correspond to (3). Therefore, if in 
the marginal state, the use of (25) gives λSnew ≠ 0 for new 
distributed slack bus snew, then according to (23) 

  πλ 1 λ
Snew

P Snew
m

mP
æ ö¶

= -ç ÷¶è ø
,  (27)

substitution of which into (25) and considering (26) yield:

  π π 1
Snew Snew

mS
m mPP

¶ ¶
= J =

¶¶ å . (28)

Thus, in the marginal state, the incremental transmission 
loss coefficient of the distributed slack bus is equal to 
unity, which is why any manipulations of the distributed 
slack bus to balance active power are compensated by 
power loss caused by such manipulations.  It means that 
the distributed slack bus is unable to maintain such a 
steady state. Any random insignificant power changes at 
buses in an unfavorable direction cannot be balanced by 
the distributed slack bus.

As in the case of the single slack bus, a change in 
the distributed slack bus (for example, an alteration in 
participation factors) in the marginal state makes this 
steady state non-marginal. Exceptions are the cases either 
where condition (21) is also satisfied in this steady state 
for a new structure of the distributed slack bus or where 
the lossless power system model is used. In the latter case, 
the normal vector (16) with  β λPk k

k
= - Jå  corresponds to 

(18)-(21), i.e., the power flow Jacobian remains singular. 

VI. concluSIon

Part II of the two-part study investigates the power 
surface proposed in Part I. The findings have revealed 
that the entries of the normal vector to the power surface 
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are interrelated through incremental transmission loss 
coefficients. Analysis of the normal vector to the power 
surface has shown that in marginal states of the power 
system the entry of the normal vector corresponding to the 
slack bus active power equals zero, and the incremental 
transmission loss coefficient of the slack bus is equal to 
one. Therefore, in marginal states, any attempts of the 
slack bus to balance active power in the power system 
are completely compensated by active power loss caused 
by such manipulations. The inability of the slack bus to 
maintain the steady state even of some buses determines 
the power system marginal state. In marginal states, the 
slack bus as if loses connection to a part or the whole of 
the power system; it corresponds to the absence of the 
slack bus in the computational steady-state model with all 
consequences. In real-world power systems, a change in 
the slack bus location in a marginal state makes this steady 
state non-marginal. Only in the lossless power systems, 
marginal states do not depend on the slack bus location. 
The study has also revealed that parameters of marginal 
states obtained by using the distributed slack bus may give 
an underestimation of the real steady-state stability reserve 
of the power system in terms of power.
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