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Abstract — Stable operation of permanent-magnet 
synchronous generator-based wind turbines (PMSG-
WTs) is a challenging and complicated objective. 
Dealing with the hard situations and complex 
operations of the PMSG-WTs has recently become 
a hot issue in modern power systems. The abilities of 
PMSG-WT to ride over faults and operate at maximum 
power point (MPP) are the most critical requirements 
for national grid regulations. To maintain the system's 
reliability, PMSG-WT should remain linked to the grid 
during normal and abnormal conditions. Furthermore, 
PMSG-WT has the potential to inject reactive power 
during failures. It produces active and reactive power 
to maintain grid voltage immediately after the fault 
is cleared. This research uses MATLAB/Simulink to 
investigate the operation at MPP during wind speed 
changes and FRT capability during three-phase fault 
of PMSG-WT to validate the support of grey wolf 
optimizer (GWO)-based PI controllers at the wind side 
converter. The findings reveal that, when PMSG-WT is 
exposed to a fault, active and reactive power react in a 
complementary manner, i.e., active power to the grid 
drops, and injected reactive power rises to stabilize the 
system. While during wind speed changes the system 
achieves MPP operation using an optimal torque 
control strategy, and the output power follows the wind 
variations.
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I. Introduction
In today’s electricity system, renewable energies 

play a critical role, with wind energy having the quickest 
implementation in many nations [1, 2]. Wind energy is less 
expensive than other renewable energy sources, delivers 
electricity with less environmental impact, and is more 
reliable [3]. The global capacity of installed wind power 
from 2001 to 2022 is presented in [4]. Several nations 
have created operational guidelines for the integration of 
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dispersed power based on grid codes. Due to their unique 
characteristics, such as variable speed and real-time power 
management, permanent-magnet synchronous generators 
(PMSGs) are the most extensively utilized wind energy 
conversion devices [5, 6].

During typical operating conditions, both the grid side 
and wind side power converters are used to manage DC link 
voltage, actual power transfer, and reactive power transfer. 
PMSG-based wind systems are often isolated from the 
grid during faults to prevent the damage of the fully rated 
back-to-back power converter and DC link capacitor [7, 
8]. Grid code, however, mandates that a certain number 
of PMSGs be linked to the grid during fault events and 
thereby assist the grid. For PMSGs to support the PMSG-
connected grid system by regulating real and reactive 
power and protecting the power electronic components in 
the system, appropriate fault ride-through (FRT) methods 
are required. Moreover, the application of optimization 
techniques or artificial intelligence-based controllers in 
wind side converters helps improve PMSG’s performance 
[9, 10]. 

Robust and adaptive control systems must be used to 
deal with the nonlinearity of wind systems. Over the last 
two decades, meta-heuristic optimization techniques have 
become very popular. Length of the training procedure and 
convergence time are the shortcomings of artificial neural 
networks (ANNs) [11]. Although fuzzy logic control (FLC) 
is easy to build, cost-effective, and has better performance 
with the system’s nonlinearities, it requires deep knowledge 
in design operation [12, 13]. There are several statistical 
and conventional techniques like the Taguchi technique, 
response surface method (RSM) [14], artificial neural 
network (ANN), and affine projection algorithm (APA) 
[15]. They are applied in fine-tuning proportional-integral 

Fig. 1. The addressed system.

Fig. 2. Hierarchy of grey wolf (dominance decreases from the 
top down).

http://esrj.ru/


Energy Systems Research, Vol. 4, No. 4, 2021M.M. Mahmoud et al.

81

(PI) controllers employed in the regulatory system of 
different power system components. These techniques, 
however, depend on the initial values. Thus, meta-heuristic 
algorithms such as particle swarm optimizer (PSO) [16], 
cuckoo search algorithm (CSA), whale optimizer algorithm 
(WOA) [17], bee algorithm (BA) [18], gravitational search 
algorithm (GSO), and differential evolution algorithm are 
competitive solutions for fine-tuning the parameters of PI 
controllers [15]. 

As the penetration of wind energy increases, the need 
to address FRT capability issues becomes more critical. 
Earlier, WTs were allowed to trip when a voltage dip 
occurred. During this voltage dip, active power provided 
to the grid by the WECS is instantaneously reduced. 
This power becomes at least temporarily lower than the 
mechanical power available at the rotor, hence, the rotor 
speed of the wind generator increases [19]. Controllable 
FRT capabilities used for PMSG wind systems, including 
pitch control system, modified converter system, and FLC-
based GSC operation are discussed in [20]. In addition, 
there are many hardware solutions, like braking chopper 
system (BCS), FACTS, and energy storage devices (ESD) 
[7, 21]. 

This work investigates an OTC-MPPT strategy during 
wind speed change and FRT capability of PMSG wind 
system using BCS at the DC-bus in the course of faults 
with the support of optimized wind side controller based 
on GWO technique. The GWO efficacy is tested in a 
variety of situations. The paper structure is as follows: 
Section 2 focuses on the description of the system under 

consideration. A mathematical model of the GWO and 
its MSC application are considered in Sections 3 and 
4, respectively. Simulation results are introduced and 
discussed in Section 5. Section 6 presents the conclusion. 

II. Description of the studied system
Figure 1 depicts the overall structure of the system 

under investigation. It consists of a WT model; PMSG, 
MSC, and GSC with their control; and a grid model.

A. A WT model
The WT model can be defined as follows [7, 17]: 
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where CP, λ, ωr, Jeq, Beq, Te, Tm are the studied WT 
parameters [17].

B. A PMSG model
The PMSG concept is fully defined in [17] and can be 

represented as follows: 

 λ – ω ψ  ds s d d e qV R I= + ! ,

Fig. 3. Hunting actions of GWs [23].
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 λ – ω ψ  s dqs q eqV R I= + ! .

The stator flux connection components can be written as:
ψd = LdId + ψpm,

ψq = LqIq.

The symbol Te can be defined in the following way:

 ( ) ( )( )3 3 ψ ψ  ψ  .
2 2e p d q q d p pm q d q d qT n I I n I I I L L= - = + -

For the surface-mounted PMs sort, Lq = Ld. Then, Te 
can be written as tracks:

 ( )3 ψ .
2e p pm qT n I=

III. A GWO approach
This study employs GWO to find the best controller 

settings. The four types of grey wolves (GWs) used to 
model the optimization technique’s leadership structure are 
alpha (α), beta (β), delta (δ), and omega (ω) (Fig. 2). The 
hunters’ choice is made by the leaders (α), as seen in Fig. 2. 
Wolves (β) assist in decision-making and also serve (α) as 
a wolf’s counsel and the pack’s enforcer. The (ω) wolves 
serve as scapegoats. This helps to keep the pack satisfied 
and the dominance structure in place. If a wolf is not a 
dominant α, β, or ω, it is described as subordinate [18]. The 
feeding behavior of GWs is seen in Fig. 3. In addition, the 
pseudo-code of the GWO algorithm is presented in Fig. 4.

The GWO mathematical formula seeks to mimic and 
recreate the numerous steps that GWs go through hunting 
prey, which are: social hierarchy (A), surrounding prey (B), 
hunting (C), attacking prey (D), and searching for prey (E).

The GWO concept is fully defined in [22] as follows: 
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IV. MSC control with GWO
As seen in Fig. 1, the job of MSC is to manage the 

machine rotor speed for maximizing output power from 
the passing wind, based on GWO. Equation (1) shows 
the system optimization model with control cost. Table 1 
indicates the selection of PI-GWO controller gains 
employed at MSC for MPPT utilizing the OTC method. 
The PMSG control cost optimization model is as follows:

 

 ( ) * * * *
1 2 3 4

0

  
T

d d m m q q dc dcMinimize F x W I I W W I I W V V= - + w -w + - + -ò

 ( ) * * * *
1 2 3 4

0

  
T

d d m m q q dc dcMinimize F x W I I W W I I W V V= - + w -w + - + -ò
, (1)

where T is the average time, while 100 and 6 are the 
iterations’ number and agents, respectively. W1, W2, W3, 
and W4 are used to compute the cost of control, which is 
4 × 105 in our studied case.

V. The FRT capability enhancement method
Figure 5 depicts the grid coding necessities of some 

pioneer countries in the wind energy sector in the event of 
a failure [24, 25]. The graph indicates that, in an abnormal 

Fig. 4. Pseudo-code of the GWO algorithm [23].
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Technique Kp1 Kp2 Ki1 Ki2 
PI-GWO 2.932 2.932 199.2438 199.2438 

 

Table 1. Gains of the PI controllers with GWO.

Table 2. Indian grid code requirement.

Fig. 5. FRT curve of grid code's pioneer nations in wind 
markets.

Nominal grid voltage Clearing time Vpf Vf 

400 kV 100 ms 360 kV 60 kV 
220 kV 160 ms 200 kV 33 kV 
132 kV 160 ms 120 kV 19.8 kV 
110 kV 160 ms 96.25 kV 16.5 kV 
66 kV 300 ms 60 kV 9.9 kV 

 
Table 3. BCS parameters.

Resistance value 1.5 Ω 
Rated power 12 kW 
Maximum temperature 150 ℃ 
Thermal time constant 4 min 
Weight 30 kg  
Dimensions (750.330.150) mm 

 

Fig. 6. BCS at the DC bus for grid-connected PMSG.

Table 4. Parameters for simulated WECS [26].
Component Parameter Symbol Value 

W
T 

Blade radius R 33.05 m 
Rated wind speed νW 12 m/s 

Optimal power coefficient CP 0.44 
Optimal tip speed ratio λopt 10.5 

Wind density ρ 
1.225 
kg/m3 

PM
SG

 

Rated power P 1.5 MW 
Rated stator voltage V 575 V 

Pole pairs p 40 
Generator stator resistance Rs 0.01 pu 
Generator inductance in the 

d frame 
Ld 0.7 pu 

Generator inductance in the 
q frame 

Lq 0.7 pu 

Permanent magnet flux ψpm 0.9 pu 

B
TB

 p
ow

er
 

co
nv

er
te

r 

MSC frequency switching Fsw-MSC 1 650 HZ 
GSC frequency switching Fsw-GSC 1 650 HZ 

DC-Link voltage VDC 1 150 V 
DC-Link capacitor CDC 10 000 μF 

Grid frequency F 60 HZ 

LC
 F

ilt
er

 Inverter side inductance Li 0.3 pu 
Inverter side resistance Ri 0.003 pu 

Filter capacitor Cf 0.0267 pu 
Damping resistance Rd 0.003 pu 

 

situation, the WT should be connected to the power grid 
for a known time according to each nation grid code, which 
fosters grid reliability. The fault clearing period, nominal 
system voltages, and fault clearing durations of the Indian 
grid code are all shown in Table 2. The Vf indicates that 
under a fault state, 15 percent of the nominal system 
voltage should be maintained, while the Vpf indicates the 
lowest voltage during normal wind system functioning. 
This paper investigates a simple cost-effective FRT 
capability enhancement method, namely a BCS, to get rid 
of surplus power at the DC bus and keep it in allowable 
ranges. Figure 6 shows a grid-connected PMSG including 
a BCS at the DC link. The used BCS parameters are listed in 
Table 3.

VI. Simulated results and discussion
MATLAB 2017b is used to evaluate the impact of 

the studied optimized controller on the performance of a 
grid-connected 1.5 MW PMSG-based wind system. The 
transient behaviors of the PMSG-based grid-connected 
system are investigated under symmetrical grid fault 
and step change of wind speed scenarios. The studied 
WECS parameters are listed in Table 4, and the used BCS 
parameters are given in Table 3.

Case 1: System performance as a result of step-change 
in wind speed. 

In this case, PMSG with optimized controllers is tested 
under a step change of wind speed in the presence of an 
OTC technique to test the system’s ability to realize MPPT. 

A. WT performance
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Fig. 7. WT performance: (a) wind speed profile, (b) λ, (c) CP..

 
(a)  

 
(b)  

 
(c)  
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Fig. 8. MSC performance: (a) Iq-MSC, (b) ωr, (c) Id-MSC.

 
(a) 

 
(b) 

 
(c) 
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Fig. 9. GSC performance: (a) Id-GSC, (b) Iq-GSC, (c) VDC.

 
(a) 

 
(b) 

 
(c) 
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Fig. 10. MSC performance: (a) Iq-MSC, (b) Id-MSC, (c) ωr..

 
(a) 

 
(b) 

 
(c) 
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Fig. 11. GSC performance: (a) Id-GSC, (b) Iq-GSC, (c) VDC..

 
(a) 

  
(b) 

 
(c) 
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Figure 7 shows the WT characteristics. A step change in 
the wind speed, with an average speed of 11 m/s, is studied 
to assess the proposed controller (Fig. 7(a)). Both λ and CP, 
which ensure operation at optimal values (10.5 and 0.44), 
are presented in Figures 7(b) and 7(c). With the optimized 
controller, the system reaches the optimal values rapidly, in 
0.987 seconds roughly.

B. MSC performance
Figures 8(a) and 8(b) demonstrate that when the 

wind speed increases the MSC quadrature current and 
electrical angular speed rise. With the optimized controller, 
the system tracks the reference values rapidly, in 1.427 
seconds roughly. Figure 8(c) shows that the MSC direct 
current is set to zero for maximal torque production and 
high efficiency.

C. GSC performance
Figure 9(a) demonstrates that GSC direct current 

rises when the wind speed increases. With the optimized 
controller, the system tracks the reference values rapidly, in 
1.847 seconds roughly. The GSC quadrature current (Fig. 
9(b)) is zero due to the unity power factor operation. Figure 
9(c) shows that the VDC is maintained constant because of 
the GSC controller’s capabilities, which indicates that all 
the generated power is transferred from MSC to GSC. 

Case 2: System performance as a result of a 3-phase 
fault.

In this case, PMSG with optimized controllers is 
subjected to a three-phase fault in the presence of a BCS to 
test the system’s ability to realize FRT. 

A. MSC performance
As seen in Figure 10, combining the GWO and BCS 

during the fault time suppresses transient oscillations in 
the system parameters, thereby increasing the PMSG’s 
FRT capability. Figures 10(a) and 10(b) show small 
oscillations in MSC quadrature current and MSC direct 
current, respectively. These oscillations are below 2%, 
which reflects the role of the optimized controller. Figure 
10(c) shows an increase in ω due to the voltage dip, where 
the system tries to supply the fault.

B. GSC performance
Figures 11(a) and 11(b) show GSC direct current and 

GSC quadrature current increase during the dip in grid 
voltage to maintain constant injected active power. These 
Figures also indicate very few oscillations in Id and Iq of 
GSC. The reactive current rises during the fault to support 
the grid voltage (Fig. 11(b)). Figure 11(c) points out a 
small overvoltage in VDC (a 30.4 % over-voltage during the 
fault period), and the system reaches its steady-state value 
(1150 V) after the fault is cleared.

VII. Conclusion 
In this study, the dynamic performance of the PMSG-

based WT system is enhanced by using the GWO approach. 
The clear benefits of the suggested technique (optimized 

MSC controllers) are efficient MPPT extraction, FRT 
capability improvement, decreased overshoot/undershoot 
performance, and smooth steady-state performance. 
The power and control circuits in MATLAB are used 
to implement the mathematical model of the addressed 
system. The response of PMSG’s parameters is presented 
for two scenarios (a step change in wind speed and three-
phase fault) to assess the robustness of the GWO technique 
and findings suggest that it was successful in achieving the 
FRT and MPPT objectives. The performance of WT, MSC, 
and GSC is studied during the wind speed changes and the 
investigated fault, and the parameters are shown to track 
their reference values rapidly. In the end, it can be stated 
that a GWO-based PI controller used at MSC enables 
greater PMSG penetration in modern power systems.
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