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Abstract — The study focuses on the problem of 
optimal control of the motion of a two-link planar 
manipulator on a fixed base with given initial and final 
conditions, nonseparated conditions for the values 
of the phase vector at intermediate times, and with a 
quality criterion given over the entire time interval. It is 
assumed that absolutely rigid links of the manipulator 
are interconnected by an ideal cylindrical hinge, and the 
similar hinge is used to attach the first link to the base. 
The optimal rules of changing the control moments 
are constructed, which allow the manipulator to move 
from a given initial state to a final one, satisfying 
nonseparated multipoint intermediate conditions. An 
application of the proposed approach is exemplified by 
constructed control functions and the corresponding 
motion with given nonseparated conditions for the 
values of the phase vector coordinates at some two 
intermediate times.

Index Terms: two-link manipulator, optimal control, 
nonseparated multipoint conditions, phase constraints.

I. Introduction
Problems of control and optimal control of dynamical 

systems with given constraints on the values of the 
coordinates of the phase vector at intermediate times 
arise in a number of problems important for applications. 
Similar problems, in particular, are encountered in the 
case of control and optimal control of manipulation 
robots, aircraft, technological processes, energy-saving 
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control of thermal devices, and others [1–3]. Such a wide 
demand requires the development and design of modern 
(highly efficient) optimal control methods, which easily 
implement the control of the manipulator, leading to the 
desired movement. When studying the movements of 
manipulators and designing control systems, a mechanical 
model of a manipulator is usually used in the form of 
a system of absolutely rigid bodies (rods), which are 
connected with each other in series using ideal hinges [7–
13]. Some important applied problems involve solving the 
problems of control and optimal control of the movement 
of manipulators as dynamic systems with nonseparated 
multipoint intermediate conditions. A characteristic feature 
of these problems is, along with the classical boundary 
(initial and final) conditions, the presence of nonseparated 
(nonlocal) conditions at several intermediate points of the 
considered interval. The study of these problems is of great 
importance for both theory and applications. Some issues 
of control and optimal control of linear dynamical systems 
with nonseparated multipoint intermediate conditions are 
examined, in particular, in [1–6]. 

This paper considers the problem of optimal control 
of the motion of a two-link planar manipulator on a fixed 
base with given initial and final conditions, nonseparated 
conditions for the values of the phase vector at intermediate 
times, and with a quality criterion given over the entire 
time interval. Based on the mathematical model of a two-
link planar manipulator in the form of Lagrange equations 
of the second kind [14], in which the main moments are 
controls, we have constructed explicit forms of the optimal 
control action and the corresponding motion using the 
method of moment problems [15].

II. Mathematical Model of the Manipulator and 
Problem Statement

We consider a two-link manipulator (see Fig. 1) 
consisting of two absolutely rigid bodies (links) G1, G2 
connected by hinge O2. Body G1 is connected with a 
fixed base by means of hinge O1. The hinges are ideal, 
cylindrical, and their axes are parallel to each other. The 
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system moves in a horizontal plane perpendicular to the 
hinge axes O1, O2. 

Each link of the manipulator is an absolutely rigid 
homogeneous rod of length L. It is assumed that link G2 
includes the executive body (grip), i.e., the mass of the 
gripper is neglected and the dynamic characteristics are 
not considered separately. Manipulator is controlled by 
two independent drives D1, D2. Drive D1 carries out the 
interaction of body G1 with the base, and drive D2 carries 
out the interaction between link G1 and link G2 of the 
manipulator. The main force vectors generated by drives 
D1, D2 are equal to zero, and the main moments relative 
to the hinge axes O1, O2 are equal to M1, M2, respectively. 
Values M1, M2 are taken as control functions in the 
considered model of the manipulator. It is also assumed 
that control functions belong to the class of piecewise 
continuous functions. We do not take into account the 
action of other forces. 

Let us introduce a fixed Cartesian coordinate system 
O1XY with the origin on the hinge axis O1 in the considered 
plane. Let us denote by φ1, φ2 the angles between the 
horizontal axis and the first and second links, respectively; 
I1, I2 are the moments of inertia of bodies G1, G2 relative to 
the corresponding axes; L1 = |O1O2| is the distance between 
hinge axes, L2 = |O2C2| is the distance from axis O2 to the 
center of gravity C2 for link G2.
The kinetic energy of the two links is equal to

 ( ) ( )
( )

2 2 2 2
1 2 1 1 2 2 2 2

2 1 2 1 2 1 2

1 1φ φ
2 2
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The equations of motion of the considered manipulator in 
the form of Lagrange differential equations of the second 
kind have the form:
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(1.1)

It is assumed that the center of mass of the second link 
is located on the axis of hinge O2, connecting with the 

first link, which corresponds to the static balance of the 
second link of the manipulator. In this case, assuming that 
|O2C2| = L2 = 0, equation (1.1) has the form

, , , , 1 2x x= 2 1x u= 3 4x x= 4 2x u= 	 (1.2)

where
 ( )21 1 2 1 1φx I m L= + ,  ( )22 1 2 1 1φx I m L= +  ,

 ( )23 2 2 2 2φx I m L= + ,  ( )24 2 2 2 2φx I m L= +  .

Control functions u1 and u2 have the form
u1 = M1 – M2, u2 = M2,

where M1, M2 are the main moments relative to the hinge 
axes. 

Let the initial and final states of system (1.2) be given
x(t0) = (x1(t0), x2(t0), x3(t0), x4(t0))T,

	 x(T) = (x1(T), x2(T), x3(T), x4(T))T,	 (1.3)
and, at some fixed intermediate time instants

0 ≤ t0 < t1 < t2 < t3 = T,
nonseparated (nonlocal) multipoint intermediate conditions 

	
 

2

1
( ) αk k

k
F x t

=

=å 	 (1.4)

be given, where α is a two-dimensional column vector, Fk 
are (2 × 4)-dimensional matrices (k = 1, 2), whose elements 
are real numbers [4].

In general, for some cases, it can be assumed that 
at intermediate times tk (k  =  1, 2) not all values of the 
coordinates of the phase vector x(tk) are present in (1.4), 
but only some of them. In such cases, we will assume the 
corresponding elements of the matrix Fk to equal zero.

System (1.2) with multipoint intermediate condition 
(1.4) on the time interval [t0, T] is completely controllable 
[2, 14].

The optimal control problem for system (1.2) with 
nonseparated multipoint intermediate conditions (1.4) can 
be formulated as follows.

Find the optimal control actions 0
1 ( )u t  and 0

2 ( )u t  , 
 0[ , ]t t TÎ , which transfer the solution to system (1.2) 

from the initial state x(t0) to the final state x(T), thereby 
ensuring satisfaction of the nonseparated multipoint 
intermediate condition (1.4) and having the smallest 
possible value of the quality criterion æ[u0]: 

		
 

0

1
2

2 2
1 2æ )[ ] (

T

t

u u dtu
æ ö

= +ç ÷ç ÷
è ø
ò .	 (1.5)

III. Solution to the Problem
To solve the problem, we write the solution to Eq. (1.2) 

following from the initial state x(t0), and by substituting the 
values x(tk) into (1.4) for the time instants t = tk (k = 1, 2), 
obtain the following relations:

 
0

2 2

0 0
1 1

[ , ] ( ) [ , τ] (τ) τ α
kt

k k k k
k k t

F X t t x t F X t Bu d
= =

+ =å åò . (2.1)

For a finite time t = T, we have

	
 

0

0 0( ) [ , ] ( ) [ , τ] (τ) τ
T

t

x T X T t x t X T Bu d= + ò ,	 (2.2)

Fig. 1. Two-link manipulator.
 

http://esrj.ru/


Energy Systems Research, Vol. 5, No. 4, 2022V.R. Barseghyan et al.

32

where X [t, τ] denotes the normalized fundamental matrix 
of the solution to the homogeneous part of equation (1.2). 
The matrices B and X [t, τ] have the following form:

 

0 0
1 0
0 0
0 1

B

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

,

 [ ]
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ç ÷
ç ÷= ç ÷
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è ø

,

where 
x11(t, τ) = x22(t, τ) = x33(t, τ) = x44(t, τ) = 1;

		  x12(t, τ) = x34(t, τ) = t – τ.	 (2.3)
Using the approaches given in [2, 4], from (2.1) and (2.2) 
we obtain the following integral relation
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is accepted. Here H[t] is a (6 × 2) block matrix, the known 
matrices F(t) and F have dimension (2  ×  4), and η is a 
(6 × 1)-dimensional known column vector.
For system (1.2) with nonseparated multipoint intermediate 
condition (1.4) to be completely controllable on the interval 
[t0, T], it is necessary and sufficient that the column vectors 
of the matrix H[t] be linearly independent on this interval.
Let nonseparated intermediate values (1.4) have the form:

x1(t1) + x3(t1) + x1(t2) + x3(t2) = α1,
	 x2(t1) + x4(t1) + x2(t2) + x4(t2) = α2,	 (2.6)

i.e., α = (α1, α2)T,  1 2

1 0 1 0
0 1 0 1

F F æ ö
= = ç ÷

è ø
.

Substituting the expressions for matrices F1, F2 and the 
fundamental matrix of solution X [t, τ] into formula (2.5), 
we have

	  
( ) [ ] [ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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æ ö
= ç ÷
è ø

,	 (2.7)

where 
f11(τ) = x11(t1,τ) + x11(t2,τ);
f12(τ) = x12(t1,τ) + x12(t2,τ);
f13(τ) = x33(t1,τ) + x33(t2,τ);
f14(τ) = x34(t1,τ) + x34(t2,τ);
f22(τ) = x22(t1,τ) + x22(t2,τ);
f24(τ) = x44(t1,τ) + x44(t2,τ);

f21(τ) = f23(τ) = 0.

Therefore, matrix H[t] will be presented in the form:

 

[ ]
( ) ( ) ( ) ( )
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According to (2.4)–(2.6), we will have the following 
integral relations:

 ( ) ( )
0

11 1 12 2 1τ τ τ η
T

t

h u h u dé ù+ =ë ûò ,

 ( ) ( )
0

21 1 22 2 2τ τ τ η
T

t

h u h u dé ù+ =ë ûò ,

 ( )
0

31 1 3τ τ η
T

t

h u d =ò ,  
0

41 1 4(τ) (τ) τ η
T

t

h h d =ò ,

	
 ( )

0

52 2 5τ τ η
T

t

h u d =ò ,  ( )
0

62 2 6τ τ η
T

t

h u d =ò ,	 (2.8)

where the following notation

h11(τ) = x12(t1,τ) + x12(t2,τ);
h12(τ) = x34(t1,τ) + x34(t2,τ);
h21(τ) = x22(t1,τ) + x22(t2,τ);
h22(τ) = x44(t1,τ) + x44(t2,τ);

h31(τ) = x12(T,τ); h41(τ) = x22(T,τ);
h52(τ) = x34(T,τ); h62(τ) = x44(T,τ);

η1 = α1 – 2[x1(t0) + x3(t0)] –
	 – (t1 + t2 – 2t0)[x2(t0) + x4(t0)];	 (2.9)

η2 = α2 – 2[x2(t0) + x4(t0)];
η3 = x1(T) – x1(t0) – (T – t0) x2(t0);

η4 = x2(T) – x2(t0);
η5 = x3(T) – x3(t0) – (T – t0) x4(t0);

η6 = x4(T) – x4(t0)

is accepted.
For a given performance criterion æ[u], the optimal 

control problem with integral condition (2.4) is a conditional 
extremum problem, where the minimum of the functional 
æ[u] must be determined under conditions (2.4).

The left-hand side of condition (2.4) is a linear operation 
generated by function u(t) on the time interval [t0, T], and 
the functional is the norm of a normed linear space. Then 
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the optimal control action u0(t), [t0,  T], minimizing the 
functional æ[u] and satisfying condition (2.4) must be 
constructed according to the algorithm for solving optimal 
control problems using the moment problem method [15].
To solve the problem of moments (1.5) and ((2.8)), following 
[15], we need to find the quantities li, i = 1,…,6, related by 
condition

			 
 

6

1

η 1i i
i

l
=

=å ,	 (2.10)

for which

	
 2 2 2

0 1 2(2.9)
0

(ρ ) min (τ) (τ) τ
T

h h dé ù= +ë ûò ,	 (2.11)

where
h1(τ) = l1h11(τ) + l2h21(τ) + l3h31(τ) + l4h41(τ),

	 h2(τ) = l1h12(τ) + l2h22(τ) + l5h52(τ) + l6h62(τ),	 (2.12)

To determine the quantities 0
il , i = 1,…,6, minimizing 

(2.11), we apply the method of indefinite Lagrange 
multipliers. Let us introduce the function

 ( ) ( )
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6
2 2

1 2
1

(τ) (τ) λ η 1
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i i
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f h h d lt
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é ùé ù= + + -ê úë û ë û
åò ,

where λ is the indefinite Lagrange multiplier. Based on 
this method, calculating the derivatives of function f with 
respect to li, i = 1,…,6 and equating them to zero, we obtain 
the following system of integral relations:
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Given the notation (2.12), equations (2.13) can be written 
in the form of the following algebraic equations:

a11l1 + a12l2 + a13l3 + a14l4 + a15l5 + a16l6 = – (λ/2)η1,
a21l1 + a22l2 + a23l3 + a24l4 + a25l5 + a26l6 = – (λ/2)η2,

a31l1 + a32l2 + a33l3 + a34l4 = – (λ/2)η3,
	 a41l1 + a42l2 + a43l3 + a44l4 = – (λ/2)η4,	 (2.14)

a51l1 + a52l2 + a55l5 + a56l6 = – (λ/2)η5,
a61l1 + a62l2 + a65l5 + a66l6 = – (λ/2)η6.

The following notation is used here:
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= t t t + t t t

ò
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( ) ( ) ( ) ( )

0

1 2
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( ) ( )
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T

t

t t

t t

a a h h d

x t x T d x t x T d

= = t t t =

= t t t + t t t

ò
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 ( ) ( )( )
0 0

22
33 31 12( ) , ,

T T

t t

a h d x T d= t t = t tò ò

 ( ) ( )
0 0

34 43 31 41 12 22( ) ( ) , , ,
T T

t t

a a h h d x T x T d= = t t t = t t tò ò

 ( ) ( )( )
0 0

22
44 41 22( ) , ,

T T

t t

a h d x T d= t t = t tò ò

 ( ) ( )( )
0 0

22
55 52 34( ) , ,

T T

t t

a h d x T d= t t = t tò ò

 ( ) ( )
0 0
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T T

t t

a a h h d x T x T d= = t t t = t t tò ò

 ( ) ( )( )
0 0
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t t

a h d x T d= t t = t tò ò
Adding condition (2.10) to the obtained equations 

(2.14), we obtain a closed system of seven algebraic 
equations for the same number of unknown quantities li, 
i = 1,…,6, and λ. Let the quantities 0

il , i = 1,…,6, and λ0 be 
the solution to this closed system of algebraic equations. 
Then, according to (2.11), (2.12), we have

 0 0 0 0 0
1 1 11 2 21 3 31 4 41( ) ( ) ( ) ( ) ( )h l h l h l h l ht = t + t + t + t ,

	  0 0 0 0 0
2 1 12 2 22 5 52 6 62( ) ( ) ( ) ( ) ( )h l h l h l h l ht = t + t + t + t ,	 (2.15)

 ( ) ( )
0

2 22 0 0
0 1 2( ) ( ) ( )

T

t

h h dé ùr = t + t tê úë ûò .

Following [15], the optimal control actions can be 
represented as:

; . 

 

( ) ( )0 0
1 12

0

1u t h t=
r

( ) ( )0 0
2 22

0

1u t h t=
r

Taking into account the notation (2.15), the optimal 
control actions are represented as follows:

 ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) [ )

( ) ( ) ( ) ( )

[ )

( ) ( ) [ ]

0 0
1 12 1 12 2 2 22 1 22 22

0
0 0
3 12 4 22 0 1

0 0 0 0 0
1 1 12 2 2 22 2 3 12 4 222

0

1 2

0 0
3 12 4 22 22

0

1 [ , , , ,

, , ], , ,
1 , , , , ,

, ,
1 , , , , ,

l x t x t l x t x t

l x T l x T t t t

u t l x t l x t l x T l x T

t t t

l x T l x T t t T

ì
t + t + t + t +ïrï

ï+ t + t Î
ï
ï

é ù= t + t + t + tí ë ûrï
ï Îï
ï

é ùt + t Îï ë ûrî

 ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) [ )

( ) ( ) ( ) ( )

[ )

( ) ( ) [ ]

0 0
1 34 1 34 2 2 44 1 44 22

0
0 0
5 34 6 44 0 1

0 0 0 0 0
2 1 34 2 2 44 2 5 34 6 442

0

1 2

0 0
5 34 6 44 22

0

1 [ , , , ,

, , , , ,
1 , , , , ,

, ,
1 , , , , ,

l x t x t l x t x t

l x T l x T t t t

u t l x t l x t l x T l x T

t t t

l x T l x T t t T

ì
t + t + t + t +ïrï

ï+ t + t Î
ï
ï

é ù= t + t + t + tí ë ûrï
ï Îï
ï

é ùt + t Îï ë ûrî

or, given (2.3), they can have the form:

 ( )

( ) ( )

[ )

( ) ( ) [ )

( ) [ ]

0 0 0 0
1 1 2 2 3 42

0

0 1
0
1 0 0 0 0

1 2 2 3 4 1 22
0

0 0
3 4 22

0

1 2 2 ,

, ,
1 , , ,

1 , , ,

l t t l l T l

t t t
u t

l t l l T l t t t

l T l t t T

ì é ù+ - t + + - t +ï ë ûrï
ï Î
ï

= í é ù- t + + - t + Îï ë ûrï
ï

é ù- t + Îï ë ûrî

 ( )

( ) ( )

[ )

( ) ( ) [ )

( ) [ ]

0 0 0 0
1 1 2 2 5 62

0

0 1
0
2 0 0 0 0

1 2 2 5 6 1 22
0

0 0
5 6 22

0

1 2 2 ,

, ,
1 , , ,

1 , , .

l t t l l T l

t t t
u t

l t l l T l t t t

l T l t t T

ì é ù+ - t + + - t +ï ë ûrï
ï Î
ï

= í é ù- t + + - t + Îï ë ûrï
ï

é ù- t + Îï ë ûrî

Substituting the expression for the optimal control 
action into (1.2) and integrating these equations, we obtain 
the optimal motion on each time interval.

IV. Example
Let some fixed intermediate times 0 ≤ t0 < t1 < t2 = T, 

and t0 = 0; t1 = 2; t2 = 3; T = 4 be given. The initial and final 
states for phase vector x = (x1, x2, x3, x4)T will be x(0) = (0, 
0, 0, 0)T, x(4) = (5, 0, 4, 1)T.
According to formula (2.9), assuming that α1 = 3, α2 = 2, 
we obtain the following value for the constant vector η:

η = (η1, η2, η3, η4, η5, η6)T = (3, 2, 5, 0, 4, 1)T.

Further, carrying out the corresponding calculations of the 
integrals for the coefficients of the system of equations 
(2.14), we obtain

a11 = 42, a12 = a21 = 25, a13 = a31 = a15 = a51 = 121/6,
a14 = a41 = a16 = a61 = 13/2, a22 = 18,

a23 = a32 = a25 = a52 = 27/2, a24 = a42 = a26 = a62 = 5,
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a33 = 64/3, a44 = 4, a34 = a43 = a56 = a65 = 8,
a55 = 64/3, a66 = 4.

Solving the system of algebraic equations (2.14) with 
the obtained numerical values of the coefficients for 0

il , 
i = 1,…,6, and λ0, we obtain the following values:

, , , 

, , 

, . 

 

1
18528
243299

l = - 2
21696
243299

l = - 3
40965
243299

l =

4
24702
243299

l = - 5
39867
243299

l =

6
22018
243299

l = - 3904
243299

l = -

Based on the notation (2.5), the optimal functions  0
1 ( )h t , 

 0
2 ( ),h t   0[ , ]t TtÎ  are represented as follows:

 

( ) ( )
[ )

( ) ( ) [ )
( ) [ ]

0 0 0 0
1 1 2 2 3 4

0 10
1 0 0 0 0

1 2 2 3 4 1 2

0 0
3 4 2

2 2 ,

, ,
( )

, , ,

, , ,

l t t l l T l

t t t
h

l t l l T l t t t

l T l t t T

ì + - t + + - t +
ï

Îï
t = í

- t + + - t + Îï
ï - t + Îî
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[ )

( ) ( ) [ )
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1 1 2 2 5 6

0 10
2 0 0 0 0

1 2 2 5 6 1 2
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5 6 2

2 2 ,

, ,
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, , ,

, , .
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t t t
h

l t l l T l t t t

l T l t t T

ì + - t + + - t +
ï

Îï
t = í

- t + + - t + Îï
ï - t + Îî

Now, calculating the value of (ρ0)2 according to formula 
(2.15), we obtain

 2
0

1952( )
243299

r = .

Further, for the components of the vector of optimal 
control action u0(t),  0[ , ],t t TÎ  we will have explicit 
expressions in the following form:

 0
1

1.6014 2.0026 , [0,2],
( ) 31.6998 11.4944 , (2,3],

71.2899 20.9862 , (3,4],

t t
u t t t

t t

- Îì
ï= - Îí
ï - Îî

 0
2

0.7264 1.4401 , [0,2],
( ) 30.8248 10.9319 , (2,3],

70.4149 20.4237 , (3,4].

t t
u t t t

t t

- Îì
ï= - Îí
ï - Îî

If we substitute the obtained expressions for the 
optimal control into (1.2) and integrate these equations, 
then we obtain the optimal motion on each time interval in 
the following form:

 

2 3

2 3
0
1

2 3

0.8007 0.3338 , [0,2],
15.8499 1.9157 34.8852 41.2131 ,

( )
(2,3],

35.6449 3.4977 127.6147 117.2705 ,
(3,4],

t t t
t t t

x t
t

t t t
t

ì
ï - Îï
ï - + -ï= í

Îï
ï - + -ï

Îïî

 

2

0 2
2

2

1.6014 1.0013 , [0,2],
( ) 31.6998 5.7472 41.2131, (2,3],

71.2899 10.4930 117.2705, (3,4],

t t t
x t t t t

t t t

ì - Î
ï= - - Îí
ï - - Îî
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Fig. 2. Graphs of the vector function of the optimal movement x0(t) at  by coordinates: a) ; b) ; c) ; d) 

. 
 
Note, by direct substitution, we can verify that the obtained optimal motions satisfy condition (1.4), i.e., 

. 

Thus, we have obtained explicit expressions for the optimal control and the corresponding optimal motion for system 
(1.2) with given initial and final values of the phase vector and nonseparated intermediate conditions (1.4). 

V. CONCLUSION 

The problem of optimal control of the motion of a two-link planar manipulator on a fixed base with given initial and 
final conditions and nonseparated conditions for the values of the phase vector at intermediate times is solved. The 
application of the proposed approach is exemplified by the construction of the functions of optimal control and the 
corresponding optimal motion with given nonseparated conditions for the values of the phase vector coordinates at 
some two intermediate times. The constructed corresponding graphs for the coordinates of the phase vector of the 
manipulator confirm the results obtained. 
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1 ( )x t 0

2 ( )x t 0
3 ( )x t

0
4 ( )x t
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3
2
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+ = ç ÷

è ø

Fig. 2. Graphs of the vector function of the optimal movement x0(t) at  [0,4]tÎ  by coordinates: a) 0
1 ( )x t ; b) 0

2 ( )x t ; c) 0
3 ( )x t ; d) 0

4 ( )x t .
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2 3

2 3
0
3

2 3

0.3632 0.2400 , [0,2],
15.4124 1.8219 34.8852 41.2131 ,

( )
(2,3],

35.2075 3.4039 127.6147
117.2705 , (3,4],

t t t
t t t

x t
t

t t
t t

ì
ï - Îï
ï - + -ï= í

Îï
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2

0 2
4

2

0.7264 0.7200 , [0,2],
( ) 30.8248 5.4659 41.2131, (2,3],

70.4149 10.2118 117.2705, (3,4].

t t t
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Figure 2 shows a graphical view of the vector-function 
of the optimal movement x0(t) at  [0,4]tÎ  by coordinates 

0
1 ( )x t , 0

2 ( )x t , 0
3 ( )x t , 0

4 ( )x t .
Note, by direct substitution, we can verify that the 

obtained optimal motions satisfy condition (1.4), i.e.,

 ( ) ( )0 0
1 1 2 2

3
2

F x t F x t æ ö
+ = ç ÷

è ø
.

Thus, we have obtained explicit expressions for the 
optimal control and the corresponding optimal motion for 
system (1.2) with given initial and final values of the phase 
vector and nonseparated intermediate conditions (1.4).

V. Conclusion
The problem of optimal control of the motion of a two-

link planar manipulator on a fixed base with given initial 
and final conditions and nonseparated conditions for the 
values of the phase vector at intermediate times is solved. 
The application of the proposed approach is exemplified 
by the construction of the functions of optimal control and 
the corresponding optimal motion with given nonseparated 
conditions for the values of the phase vector coordinates 
at some two intermediate times. The constructed 
corresponding graphs for the coordinates of the phase 
vector of the manipulator confirm the results obtained.
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