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Abstract — The paper presents a technology for 
predictive estimation of meteorological indicators 
based on the global climate model CFSv2. This 
technology provides continuous monitoring of current 
and prognostic indicators of the state of the atmosphere 
(temperature, pressure, humidity, precipitation, etc.) in 
the catchment basin of Lake Baikal. The monitoring and 
data analysis tasks are briefly described as well as the 
operation algorithms for the main software components 
intended to obtain predictive distributions of weather 
indicators for the average values of a given time period, 
predictive scenarios of the dynamics of their changes 
for a selected point or a separate basin. The technology 
involves adjusting the weights of individual ensembles 
of predictive data of the global CFSv2 system, which 
provides more reliable predictive estimates.

Index Terms: prognostic estimates, monitoring and 
data analysis, climate forecast system, climate maps, 
ensemble approach.

I. Introduction
Long-term prognostic estimates for 3 months or more are 
important to manage the operation of hydroelectric power 
plants (HPP). This affects the generation of electricity in 
a region with a high share of HPP (for example, for the 
Irkutsk region it is about 80%). Melentiev Energy Systems 
Institute of Siberian Branch of the Russian Academy of 
Sciences (ESI SB RAS) has been developing long-term 
forecasting of nature-conditioned energy factors for a long 
time (for more than 60 years) [1–3]. The founders of this 
area of research are Academician I.P. Druzhinin and Pro-
fessor A.P.  Reznikov. The GIPSAR system, which was 
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developed at the Institute and included various approxima-
tive and probabilistic methods [4, 5], made it possible to 
obtain sufficiently reliable prognostic estimates. Unfortu-
nately, global climate change has disrupted many previ-
ously found patterns, which significantly reduced the reli-
ability of prognostic results.

Modern global climate models make it possible to 
model and predict the climatic situation for various 
forecast horizons by considering many factors of the state 
of the atmosphere, ocean, and land. They allow producing 
long-term prognostic estimates based on the ensemble 
approach [6]. This approach suggests the technology for 
processing predictive ensembles and generates the most 
probable climatic conditions based on processing the data 
of the global climate model CFSv2 [7, 8].

II. Global Model CFSv2
Data processing of the global climate model Climate 

Forecast System (CFS) is implemented by separate 
components of the GeoGIPSAR information and climate 
system, which is a GIPSAR system extension, which 
includes the matrices of global data grid. This system was 
developed at the NCES Environmental Modeling Center 
[9]. The model is fully coupled and shows the interactions 
among the Earth’s atmosphere, oceans, land, and sea ice. 
The main advantage of CFS is the openness of the data it 
provides.

The main purpose of the data analysis in CFSv2 is to 
create long-term global grid representations of atmospher-
ic states generated by the model and the data assimilation 
system. The use of operational data has made progress in 
climate research by eliminating fictitious trends caused by 
model changes and data assimilation by second. 

Data sets from the first version of CFS were collected 
and converted into the form required for the second version, 
which was a difficult and time-consuming task. This format 
was brought in line with international standards for the 
storage and exchange of observational data. Thousands of 
graphics editors of the model are generated automatically 
at the end of each reanalyzed month according to the first 
version and are displayed on the Climate Forecast System 
Reanalysis (CFSR) website in real time. In contrast to the 
first CFS version, CFSv2 has the following new features:
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•	 Analysing ocean parameters every 6 hours. 
•	 Building an interactive ice model.
•	 Processing satellite signals received over 24 hours.

The main indicators of CFSv2 predictive ensembles, 
which are used in the GeoGYPSAR system, are precipitation 
intensity, surface air temperature, pressure above sea level, 
geopotential indicators on isobaric surfaces of 500 and 850 
gpa, and atmospheric circulation rates [10].

Other models can also be used for forecasting, but most 
of them have commercial security.

III. The Main Components of Geoclimatic Data 
Processing

The GeoGIPSAR system is implemented in the form 
of various interconnected components that perform certain 
tasks. It includes the tools for adding new components and 
developing the existing ones. The main component aims 
to obtain the most probable distributions of atmospheric 
processes for an arbitrary time period [11, 12].

The system components are divided into 2 groups. 
The first group includes:

1. Component for internet monitoring of new data of pre-
dictive ensembles in the CFSv2 Global Model Data Center 
[13].
2. Component for converting, aggregating, and writing to a 
data warehouse.

The second group of components includes:
1.	 Component for analysis and generation of prognostic 

indicators (averages for the period of climatic spatial 
distributions of indicators or their deviations from the 
norm).

2.	 Component for building prognostic scenarios of changes 
in meteorological indicators for a selected point or basin 
in comparison with the range of changes in actual data.

3.	 Component for visual representation of probabilistic 
distributions of the studied indicator for the selected 
point according to various sets (or weights) of individual 
ensembles.

4.	 Component for verification of prognostic indicators based 
on their comparison with actual data and refinement of 
the weighting coefficients of various ensembles.
After a reliable prognostic scenario of climatic param-

eters for the time period under study is obtained [14, 15], an 
algorithm for obtaining the inflow through the determina-
tion of the closest analogous years is applied. Such years are 
determined based on the spatial distribution over the past 
similar periods to minimize the proximity of comparative 
indicators in the following form:
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where: 
e, y denotes the studied periods of the season and those 

similar for other years (in a range of years); 
p ∈ P defines the type of parameter with a weighting 

factor cp from a given set P;
dij (i, j) is a specified weight function depending on the 

coordinates of the region i, j, with the maximum values in 
the area of the studied catchment basin;

e
ijp , y

ijp  are aggregated indicators of the season period 
e and y years for each cell of the coordinate grid of the 
region.

An operatively formed set of the closest years with in-
dicators σ(e, y, P) ≤ σ0 allows obtaining estimates of the 
dynamics of changes in water content for the nearest pe-
riod.

IV. Description of the Technology for Predictive 
Estimation

The technology for predictive estimation of weather indi-
cators based on the global CFSv2 model relies on an inte-
grated approach, which allows considering weather indica-
tors from different angles and to quickly make estimates of 
water content within the specified limits of the catchment 
basin. This approach makes it possible to increase the reli-
ability of predictive estimates of water inflows into hydro-
electric power plant (HPP) reservoirs. This is necessary for 
the effective management of HPP operating modes. The 
software components of the GeoGIPSAR technology per-
form the following tasks:
1.	 Internet monitoring allows downloading the necessary 

data of predictive ensembles of various weather 
indicators in a binary GRIB format, which has a 
complex structure with information compression.

2.	 Data conversion, aggregation, and recording in 
the GeoGYPSAR data warehouse in the form of 
specialized format files, which include daily averages.

3.	 Construction of prognostic maps based on absolute 
and relative weather indicators.

4.	 Generation of prognostic probable scenarios of a 
meteorological indicator for a point or a selected basin.

5.	 Estimation of the probabilistic distribution of 
the weather indicator component for the selected 
period with the calculation of the main statistical 
characteristics.

6.	 Determination of the weight coefficients of individual 
ensembles.

7.	 Verification based on comparison of prognostic and 
actual data.

8.	 Visualization of predictive maps and graphs.
Figure 1 shows the interaction of software components 

in the tasks of Internet monitoring, data conversion and 
recording in the of CFS ensemble storage. Daily automatic 
Internet monitoring provides new predictive ensembles 
periodically downloaded from the CFSv2 Data Center. 
Next, the downloaded GRIB format files with a complex 
binary structure are converted to a lighter and more flexible 
CFS format, which is necessary for further efficient 

http://esrj.ru/


Energy Systems Research, Vol. 5, No. 4, 2022V. A. Petrukhina, N. V. Abasov

14

	

	

Internet	
monitoring	

Data	
conversion 

	

	 

CFSv2	Data	
Center	

Predictive 
ensembles 

CFS 
ensemble 
storage 

Fig. 1. Interaction of software components of the technology of forming predictive estimates.
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Fig. 2. Application of CFS ensembles within the technology for predictive estimation of meteorological indicators.

 
Fig. 3. The air temperature anomalies for June 2022.
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processing. The converted files are accumulated in the CFS 
ensemble storage.

The second group of the software components focuses 
on the use of CFS ensembles for various purposes (Fig. 2). 
The predictive maps of weather indicators are constructed 
using pluggable forecasting parameters (a selection of 
ensembles used, dates of the forecast period, the number 
of ensembles, connected GIS data, terrain coordinates, the 
predicted weather indicator, etc.). 

The predictive scenario of the dynamics of changes 
in meteorological indicators is based on the forecast 
ensembles of CFS, given the range of its daily fluctuations 
according to the actual data of reanalysis [16].

Probabilistic prognostic distributions show the range 
and probabilities of the values of the studied meteorological 
indicator for a given period in comparison with the actual 
data for the given period.

V. Approach to Processing Predictive Ensembles
The components of processing the predictive ensembles 

allow constructing predictive maps of meteorological 
indicators (precipitation, temperature, pressure, etc.) 
for the studied catchment basins for a given period (up 
to 9 months); build predictive scenarios of changes in 
meteorological indicators for river basins; and generate 
probabilistic distributions of prognostic indicators for the 
studied period with operational calculation of the main 
statistical characteristics.

The generation of predictive indicators for a specific 
meteorological parameter for a certain coordinate grid (se-

lected region) employs absolute and relative indicators, the 
general form of which is represented by formula:

	( ) ( ){ },   , , 1, , , 1, ,ij x yP k t p k t i N j N= = … = … . (2)

To obtain predictive indicators with equal weights of 
ensembles, the formula (3) is used:
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Formula (4) is used to determine predictive indicators 
given the weighting coefficients of ensembles ck:
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where: 
pij – geoclimatic parameter;
t – time indicator;
Nx – latitude coordinate;

Ny – longitude coordinate;
ck – weight of the ensemble;
K – number of predictive ensembles;
k – ensemble for a specific parameter;
i, j – spatial distribution indices (latitude, longitude).
The technology also involves the selection of the 

weighting coefficients of the influence of individual 
ensembles to obtain final indicators, and has procedures 
for verification based on actual data. The accuracy of 
forecasting weather indicators can be increased by 

 Fig. 4. A predictive scenario of the dynamics of temperature changes for the summer period for the village of Kyakhta.

http://esrj.ru/


Energy Systems Research, Vol. 5, No. 4, 2022V. A. Petrukhina, N. V. Abasov

16

 
Fig. 5. Probabilistic prognostic and actual (for 2001-2020) distributions of the average 
temperature of July 2022 in the village of Kyakhta according to the data of prognostic 
ensembles for the period (01.03-30.04), 2022.

 
Fig. 6. An example of using a predictive map as a layer in Google Earth.
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assigning a weight to an individual data ensemble and 
varying it depending on the importance. To assign a weight 
to the ensemble, it is necessary to analyze the degree of 
influence on the predicted time period.

VI. Examples of Using the technology to Predict 
Climate Indicators

The performance of the technology can be seen in Fig. 3. 
It shows a geoclimatic map for temperature anomalies for 
June 2022. The map is built by processing the data ensem-
bles for the months of January–February. For more accu-
rate results, it is necessary to periodically update the data 
of the forecast period and adjust the weighting coefficients 
of the influence of individual ensembles.

A set of accumulated ensembles can be used to build 
a predictive scenario of the dynamics of changes in the 
meteorological indicator for a given period. For example, 
Figure 4 shows the dynamics of temperature changes for 
the summer period for the village of Kyakhta. The red 
area highlights the most likely range, in which the air 
temperature indicator will be located. The solid red line 
shows the averaged most probable temperature based on 
processing 10 data ensembles. The blue and pink dashed 
lines show the lowest and highest possible average daily 
temperatures.

Figure 5 shows a graph of the probabilistic predictive 
and actual distribution of the average temperature of July 
2022 in the village of Kyakhta according to the data of 
prognostic ensembles for the months of March and April. 
The green area is a refinement of the last 3 ensembles, the 
dashed lines on the graph are the medians of the actual 
(blue line) and predictive (pink line) values. At the same 
time, the data beyond 5–95% can be discarded. The actual 
data are taken into account for the period from 2001 to 
2020, which is associated with global climate changes 
compared to the data of the 20th century.

The predictive indicators obtained are represented by 
geoclimatic maps, which can have various formats. The 
technology enables the transformation of maps to overlay 
a predictive indicator in the form of a layer in standard GIS 
systems in various services. For example, in Figure 6, a 
distribution in the form of a kml file is added as a separate 
layer to the standard GIS system Google Earth.

VII. Conclusion
The technology for predictive estimation of 

meteorological indicators based on the global climate 
model CFSv2 provides operational assessments of the state 
of the atmosphere in the studied catchment basin or at a 
desired point on the map by coordinates. The estimation 
at issue in combination with other methods employed in 
GeoGIPSAR allows experts to build the most probable 
prognostic picture. This approach, however, does not 
provide unambiguous prognostic estimates in the case 
of a long lead time and requires constant refinement (at 
least once a month) with the possibility of changing 

prognostic distributions. These data need to be coordinated 
with the data obtained using other approaches, such as 
neural network models, to adjust and refine the weighting 
coefficients of the influence of individual initial ensembles 
on the final result. The development of this technology 
in this direction will improve the accuracy of predictive 
estimates of meteorological parameters.

The proposed software components have a flexible 
structure and wide possibilities for their development. The 
technology also allows adding new methods of analysis 
and forecasting of energy-significant meteorological 
indicators. 
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