Dissociation of Gas Hydrates in the Combustion Environment





gas hydrates, thermal processing, diffusion flame, dissociation kinetics


This paper proposes mathematical models of gas hydrate decomposition in high-temperature media. These models are based on heat and mass balances with a set of assumptions about transfer mechanisms and features of chemical reactions. The calculations provide an insight into dynamics of hydrate particles in a flame environment and shed light on possible results of interaction between the combustion front and emission of gas and vapor. Several examples are provided to illustrate the potential of hydrates as a fuel and as a flame extinguishing material. The developed models enable the generation of numerical estimates, which can be employed to design technologies for beneficial uses of gas hydrates.

Author Biography

Igor Donskoy, Melentiev Energy Systems Institute of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia

Igor G. Donskoy received the Ph.D. degree in 2014. Currently he is a Senior researcher in the Laboratory of Thermodynamics at Melentiev Energy Systems Institute SB RAS (Irkutsk). His main research interests include mathematical modelling in fuel processing and thermal engineering.


Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, X.-S. Li, “Review of natural gas hydrates as an energy resource: Prospects and challenges,” Appl. Energy, vol. 162, pp. 1633–1652, 2016. doi: 10.1016/j.apenergy.2014.12.061

Z. Yin, P. Linga, “Methane hydrates: A future clean energy resource,” Chinese J. Chem. Eng., vol. 27, pp. 2026–2036, 2019. doi: 10.1016/j.cjche.2019.01.005

Energy technology perspectives 2020. International Energy Agency, 2021.

Prospects for the development of global energy, taking into account the impact of technological progress. Moscow: ERI RAS, 2020. (In Russian)

X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, G. Li, Y. Wang, “Investigation into gas production from natural gas hydrate: A review,” Appl. Energy, vol. 172, pp. 286–322, 2016. doi: 10.1016/j.apenergy.2016.03.101

F. Li, Q. Yuan, T. Li, Z. Li, C. Sun, G. Chen, “A review: Enhanced recovery of natural gas hydrate reservoirs,” Chinese J. Chem. Eng., vol. 27, pp. 2062–2073, 2019. doi: 10.1016/j.cjche.2018.11.007

N. Wu, Y. Li, Y. Wan, J. Sun, L. Huang, P. Mao, “Prospect of marine natural gas hydrate stimulation theory and technology system,” Natural Gas Industry B, vol. 8, pp 173–187, 2021. doi: 10.1016/j.ngib.2020.08.003

H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee, P. Linga, “A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates,” Appl. Energy, vol. 216, pp. 262–285, 2018. doi: 10.1016/j.apenergy.2018.02.059

C. Cheng, F. Wang, Y. Tian, X. Wu, J. Zheng, J. Zhang, L. Li, P. Yang, J. Zhao, “Review and prospects of hydrate cold storage technology,” Renewable and Sustainable Energy Reviews, vol. 117, p. 109492, 2020. doi: 10.1016/j.rser.2019.109492

O. Gaidukova, S. Misyura, V. Morozov, P. Strizhak, “Gas Hydrates: Applications and Advantages,” Energies, vol. 16, p. 2866, 2023. doi: 10.3390/en16062866

V. Krey, J.G. Canadell, N. Nakicenovic, et al., “Gas hydrates: entrance to a methane age or climate threat?” Environ. Res. Lett., vol. 4, p. 034007, 2009. doi: 10.1088/1748-9326/4/3/034007

Y. Maruyama, M.J. Fuse, T. Yokomori, R. Ohmura, S. Watanabe, T. Iwasaki, W. Iwabuchi, T. Ueda, “Experimental investigation of flame spreading over pure methane hydrate in a laminar boundary layer,” Proc. Combust. Inst., vol. 34, pp. 2131–2138, 2013. doi: 10.1016/j.proci.2012.06.179

S. Y. Misyura, “Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation,” Energy, vol. 181, pp. 589–602, 2019. doi: 10.1016/j.energy.2019.05.177

G. Cui, Z. Dong, K. Xie, S. Wang, T. Guo, J. Liu, X. Xing, Z. Li, “Experimental study on the effect of airflow conditions on the combustion characteristics of methane hydrate,” Fuel, vol. 300, p. 120926, 2021. doi: 10.1016/j.fuel.2021.120926

I. M. Bayanov, I. K. Gilmatdinov, M. V. Stolpovskii, “Modeling the Process of Combustion of Methane Hydrate with Allowance for Nonequilibrium Decomposition,” J. Eng. Phys. Thermophys., vol. 96, pp. 104–111, 2023. doi: 10.1007/s10891-023-02666-4

I. K. Gilmatdinov, I. M. Bayanov, M. V. Stolpovskii, A. S. Chiglintseva, “On the Confined Combustion of a Hydrate,” J. Eng. Phys. Thermophys., vol. 95, pp. 591–598, 2022. doi: 10.1007/s10891-022-02515-w

G. Cui, T. Guo, K. Xie, Z. Dong, D. Wu, J. Yin, Z. Li, “Combustion experiment and numerical simulation of methane hydrate sediment under different airflow environments,” Fuel, vol. 333, p. 126560, 2023. doi: 10.1016/j.fuel.2022.126560

G. Cui, D. Wu, Y. Li, S. Yao, T. Guo, J. Yin, X. Xing, J. Liu, “Effect of Lithological Parameters on Combustion Characteristics of Methane Hydrate Sediments,” Fire, vol. 6, p. 463, 2023. doi: 10.3390/fire6120463

V. A. Vlasov, “Diffusion model of gas hydrate dissociation into ice and gas that takes into account the ice microstructure,” Chem. Eng. Sci., vol. 215, p. 115443, 2020. doi: 10.1016/j.ces.2019.115443

S. Y. Misyura, I. G. Donskoy, “Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing,” Energies, vol. 14, p. 4855, 2021. doi: 10.3390/en14164855

S. Y. Misyura, I. G. Donskoy, A. Y. Manakov, V. S. Morozov, P. A. Strizhak, S. S. Skiba, A. K. Sagidullin, “Studying the influence of key parameters on the methane hydrate dissociation in order to improve the storage efficiency,” Journal of Energy Storage, vol. 44A, pp. 103288, 2021. doi: 10.1016/j.est.2021.103288

I. G. Donskoy, S. Ya. Misyura, “Experimental and theoretical study of diffusion combustion of methane above a gas hydrate layer in a laminar air flow,” Combustion, Explosion, and Shock Waves, vol. 58, pp. 440–449, 2022. doi: 10.1134/S0010508222040062

F. H. Wu, R. E. Padilla, D. Dunn-Rankin, G. B. Chen, Y. C. Chao, “Thermal structure of methane hydrate fueled flames,” Proc. Combust. Inst., vol. 36, pp. 4391–4398, 2017. doi: 10.1016/j.proci.2016.06.012

R. E. Padilla, D. Escofet-Martin, T. Pham, W. J. Pitz, D. Dunn-Rankin, “Structure and behavior of water-laden CH4/air counterflow diffusion flames,” Combust. Flame, vol. 196, pp. 439–451, 2018. doi: 10.1016/j.combustflame.2018.06.037

O. Gaidukova, V. Morozov, R. Volkov, P. Strizhak, “Containment and Suppression of Class A Fires Using CO2 Hydrate,” Fire, vol. 6, p. 82, 2023. doi: 10.3390/fire6030082

O. Gaidukova, I. Donskoy, S. Misyura, V. Morozov, R. Volkov, “The Interaction between a Liquid Combustion Front and a Fire Barrier Made of CO2 Hydrate,” Fire, vol. 6, p. 124, 2023. doi: 10.3390/fire6030124

L. A. Vulis, Thermal regimes of combustion, NY, McGraw-Hill Book Company, Incorporated, 1961.

V. V. Azatyan, “Decisive Role of the Laws of Chain Reactions in Processes of Combustion, Explosion, and Detonation of Gases,” Kinet. Catal., vol. 62, pp. 233–244, 2021. doi: 10.1134/S0023158421020014

H. C. Kim, P. R. Bishnoi, R. A. Heidemann, S. S. H. Rizvi, “Kinetics of methane hydrate decomposition,” Chem. Eng. Sci., vol. 42, pp. 1645–1653, 1987. doi: 10.1016/0009-2509(87)80169-0

N. M. Laurendeau, “Heterogeneous kinetics of coal char gasification and combustion,” Progress in Energy and Combustion Science, vol. 4, pp. 221–270, 1978.

D.V. Antonov, E.A. Shchepakina, V.A. Sobolev, S.Y. Misyura, I.G. Donskoy, P.A. Strizhak, S.S. Sazhin, “Dissociation of methane from a layer of methane-hydrate particles: A new simple model,” Int. J. Heat Mass Transfer, vol. 213, p. 124225, 2023. doi: 10.1016/j.ijheatmasstransfer.2023.124225

E. D. Sloan, C. A. Koh, Clathrate hydrates of natural gases, 3rd ed. Boca Raton, Florida, USA: CRC Press, Taylor and Francis Group, 2008.

I. G. Donskoy, S. Ya. Misyura, “Non-Isothermal Kinetic Model of the Methane Hydrate Dissociation Process at Temperatures Below Ice Melting Point,” Energy Systems Research, vol. 3, no. 1, pp. 27–42, 2020. doi: 10.38028/esr.2020.01.0003

S. Y. Misyura, I. G. Donskoy, “Dissociation kinetics of methane hydrate and CO2 hydrate for different granular composition,” Fuel, vol. 262, p. 116614, 2020. doi: 10.1016/j.fuel.2019.116614

D. B. Spalding, Combustion and mass transfer. Oxford, UK: Pergamon Press, 1979.

M. E. Aerov, O. M. Todes, D. A. Narinskii, Stationary granular beds: hydraulics and heat transfer. Leningrad, USSR: Chemistry Publishing, 1979. (In Russian)

T. Bar-Kohany, W.A. Sirignano, “Transient combustion of a methane-hydrate sphere,” Combust. Flame, vol. 163, pp. 284–300, 2016. doi: 10.1016/j.combustflame.2015.10.004

Y. Dagan, T. Bar-Kohany, “Flame propagation through three-phase methane-hydrate particles,” Combust. Flame, vol. 193, pp. 25–35, 2018. doi: 10.1016/j.combustflame.2018.02.026

Ya. B. Zeldovich, Selected works. Volume I: Chemical Physics and Hydrodynamics. Princeton, New Jersey, USA: Princeton Univ. Press, 1992.

A. Linan, “The asymptotic structure of counterflow diffusion flames for large activation energies,” Acta Astronautica, vol. 1, pp. 1007–1039, 1974. doi: 10.1016/0094-5765(74)90066-6

E. P. Volchkov, V. I. Terekhov, V. V. Terekhov, “Flow Structure and Heat and Mass Transfer in Boundary Layers with Injection of Chemically Reacting Substances (Review),” Combustion, Explosion, and Shock Waves, vol. 40, pp. 1–16, 2004. doi: 10.1023/B:CESW.0000013663.27112.ab

S. Y. Misyura, “Efficiency of methane hydrate combustion for different types of oxidized flow,” Energy, vol. 103, pp. 430–439, 2016. doi: 10.1016/j.energy.2016.03.005

A. Yu. Snegirev, “Perfectly stirred reactor model to evaluate extinction of diffusion flame,” Combust. Flame, vol. 162, pp. 3622–3631, 2015. doi: 10.1016/j.combustflame.2015.06.019

A. Yu. Snegirev, A. S. Tsoy, “Treatment of local extinction in CFD fire modeling,” Proc. Combust. Inst., vol. 35, pp. 2519–2526, 2015. doi: 10.1016/j.proci.2014.07.051

B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species (NASATP-2002-211556). Cleveland, USA: Glenn Research Center, 2002.

Y. Ju, H. Guo, F. Liu, K. Maruta, “Effects of the Lewis number and radiative heat loss on the bifurcation and extinction of CH4/O2-N2-He flames,” J. Fluid Mech., vol. 379, pp. 165–190, 1999. doi: 10.1017/S0022112098003231

V. Hlavacek, P. Van Rompay, “On the birth and death of isolas,” Chem. Eng. Sci., vol. 36, pp. 1730–1731, 1981. doi: 10.1016/0009-2509(81)80019-X

C. Cranganu, “In-situ thermal stimulation of gas hydrates,” J. Petroleum Sci. Technol., vol. 65, pp. 76–80, 2009. doi: 10.1016/j.petrol.2008.12.028

S. Y. Misyura, I. G. Donskoy, “Dissociation of a powder layer of methane gas hydrate in a wide range of temperatures and heat fluxes,” Powder Technol., vol. 397, p. 117017, 2022. doi: 10.1016/j.powtec.2021.11.061