The Identification of a Promising Research Topic in Applying Generative Artificial Intelligence in Petroleum Engineering
DOI:
https://doi.org/10.25729/esr.2025.02.0005Keywords:
promising research topic, generative artificial intelligence, adversarial attacks, Scopus bibliometric records, SDMM algorithm, Scimago Graphica programAbstract
This study aims to identify a promising research topic related to the use of generative artificial intelligence in the petroleum industry. It involves the collection of publications on generative artificial intelligence in the Scopus abstract database related to engineering and computer science, the systematization of the publications using the GSDMM algorithm, and the search for publications on the OnePetro platform that are close to the research objectives identified by Scopus. The analysis focused on 12 424 Scopus bibliometric records. The texts of the title and abstract fields were used to cluster the records. As a result, 21 clusters were obtained. For each cluster, stacked histograms of the difference in the occurrence of terms for this cluster and the other clusters were constructed using the program Scimago Graphica. A promising research topic could be adversarial attacks that compromise generative models by manipulating input data. This topic is underrepresented in petroleum literature, but has significant research potential because much has been written about it in publications from other subject areas. The findings of this study provide the petroleum industry professionals with the opportunity to broaden their search for publications on generative models and deepen their expertise in this research area.
References
A. Singla, A. Sukharevsky, L. Yee, M. Chui, B. Hall, “The state of AI in early 2024,” McKinsey, May 30, 2024. [Online]. Available: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024. Accessed on: Jan. 08, 2025.
C. Relyea, D. Maor, S. Durth, J. Bouly, “Gen AI adoption: The next inflection point,” McKinsey, Aug. 07, 2024. [Online]. Available: https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/gen-ais-next-inflection-point-from-employee-experimentation-to-organizational-transformation. Accessed on: Jan. 08, 2025.
P. Zhang, J. Shi, M. N. Kamel Boulos, “Generative AI in Medicine and Healthcare: Moving Beyond the “Peak of Inflated Expectations,” Future Internet, vol. 16, no. 12, p. 462, 2024. DOI: 10.3390/fi16120462.
N. Fijačko et al., “Using generative artificial intelligence in bibliometric analysis: 10 years of research trends from the European Resuscitation Congresses,” Resuscitation Plus, vol. 18, Art. no. 100584, 2024. DOI: 10.1016/j.resplu.2024.100584.
N. J. Van Eck, L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523–538, 2010. DOI: 10.1007/s11192-009-0146-3.
J. Yin, J. Wang, “A dirichlet multinomial mixture model-based approach for short text clustering,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA: ACM, Aug. 2014, pp. 233–242. DOI: 10.1145/2623330.2623715.
R. Walker, rwalk/gsdmm-rust. (Jun. 21, 2025). Rust. Accessed: Jul. 25, 2025. [Online]. Available: https://github.com/rwalk/gsdmm-rust.
L. Li, “The Study on Food Safety of 15 “RCEP” Countries: Based on VOSviewer and Scimago Graphica,” Science & Technology Libraries, vol. 43, no. 2, pp. 147–154, 2024. DOI: 10.1080/0194262X.2023.2237560.
S. R. Krishnan, E. P. Sim, C. M. Varghese, B. Rajan, C. S, E. Thomas, “Detection of Diseases in Tomato Leaves Using Deep Learning Models: A Survey,” in 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Kochi, India: IEEE, Apr. 2024, pp. 1–6. DOI: 10.1109/ICTEST60614.2024.10576182.
G. Venkata Rami Reddy, A. Niranjan, “War Snake Optimization Algorithm with deep Q-Net for COVID-19 classification,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, no. 7, Art. no. 2245925, 2024. DOI: 10.1080/21681163.2023.2245925.
C. Yin et al., “Imbalanced Working States Recognition of Sucker Rod Well Dynamometer Cards Based on Data Generation and Diversity Augmentation,” SPE Journal, vol. 28, no. 04, pp. 1925–1944, 2023. doi: 10.2118/214661-PA.
M. Ayub, S. I. Kaka, “Automated Hyperparameter Optimization of Convolutional Neural Network (CNN) for First-Break (FB) Arrival Picking,” in Proceedings of the Gas and Oil Technology Showcase and Conference, 2023, Dubai, UAE: SPE, Mar. 2023, p. D031S036R002. DOI: 10.2118/214253-MS.
A. Barbadekar, S. Sole, A. Shekhavat, “Enhancing Social Media Security: LSTM-Based Deep Fake Video Detection,” in Proceedings of 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India: IEEE, Apr. 2024, pp. 1–6. DOI: 10.1109/I2CT61223.2024.10543604.
M. Kumar, P. K. Rai, P. Kumar, “A Novel Approach for Detecting Deepfake Face Using Machine Learning Algorithms,” in Proceedings of the 2nd International Conference on Disruptive Technologies (ICDT), Greater Noida, India: IEEE, Mar. 2024, pp. 1588–1592. DOI: 10.1109/ICDT61202.2024.10489036.
R. S. Aldossary, M. N. Almutairi, N. M. Alotaibi, D. Serkan, “Personal Protective Equipment Detection Using Computer Vision Techniques,” in ADIPEC, Abu Dhabi, UAE: SPE, Oct. 2023. doi: 10.2118/216253-MS.
A. Gharieb, M. A. Gabry, M. Y. Soliman, “The Role of Personalized Generative AI in Advancing Petroleum Engineering and Energy Industry: A Roadmap to Secure and Cost-Efficient Knowledge Integration: A Case Study,” in Proceedings of SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA: SPE, Sep. 2024, p. D011S007R002. DOI: 10.2118/220716-MS.
H. Wang, D. Zhai, X. Zhou, J. Jiang, X. Liu, “Mix-DDPM: Enhancing Diffusion Models through Fitting Mixture Noise with Global Stochastic Offset,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 20, no. 9, Art. no. 283, pp. 1–24, 2024. DOI: 10.1145/3672080.
D. Heurtel-Depeiges, C. C. Margossian, R. Ohana, B. R.-S. Blancard, “Listening to the Noise: Blind Denoising with Gibbs Diffusion,” arXiv, 2024. DOI: 10.48550/ARXIV.2402.19455.
L. Wang, L. Zhang, R. Deng, H. Wang, X. Zhao, B. Xu, “Integrating Multi-Source Experiment Data and Variational Diffusion Model for Intelligent Constructing Digital Core: A Case Study of Sandstone Reservoir in the Turgay Basin Central South Kazakhstanc,” in SPE Caspian Technical Conference and Exhibition, Atyrau, Kazakhstan: SPE, Nov. 2024. DOI: 10.2118/223464-MS.
F. Jiang, K. Osypov, J. Toms, “Implementation of denoising diffusion probability model for seismic interpretation,” in Third International Meeting for Applied Geoscience & Energy Expanded Abstracts, Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, Dec. 2023, pp. 1098–1102. DOI: 10.1190/image2023-3907375.1.
H. Meng, B. Lin, R. Zhang, Y. Jin, “A Missing Well-Logs Imputation Method Based on Conditional Denoising Diffusion Probabilistic Models,” SPE Journal, vol. 29, no. 05, pp. 2165–2180, 2024. DOI: 10.2118/219452-PA.
M. F. Yousuf, M. S. Mahmud, “Generating Synthetic Time-Series Data on Edge Devices Using Generative Adversarial Networks,” in 2024 International Conference on Computing, Networking, and Communications (ICNC), Big Island, HI, USA: IEEE, Feb. 2024, pp. 441–445. DOI: 10.1109/ICNC59896.2024.10556140.
K. A. Bhat, S. A. Sofi, “From shallows to depths: unveiling hybrid synthetic data modeling for enhanced learning with privacy considerations in naturally imbalanced datasets,” International Journal of Computers and Applications, vol. 46, no. 12, pp. 1088–1103, 2024. DOI: 10.1080/1206212X.2024.2409989.
H. Hassani, A. Shahbazi, E. Shahbalayev, Z. Hamdi, S. Behjat, M. Bataee, “Machine Learning-Based CO2 Saturation Tracking in Saline Aquifers Using Bottomhole Pressure for Carbon Capture and Storage CCS Projects,” in Proceedings of SPE Subsurface Conference, 2024, Bergen, Norway: SPE, Apr. 2024, p. D011S009R002. DOI: 10.2118/218445-MS.
R. Huang, H. Lin, C. Chen, K. Zhang, W. Zeng, “PlantoGraphy: Incorporating Iterative Design Process into Generative Artificial Intelligence for Landscape Rendering,” in Proceedings of the CHI Conference on Human Factors in Computing Systems, Honolulu HI USA: ACM, May 2024, Art. no. 168, pp. 1–19. DOI: 10.1145/3613904.3642824.
X. Liu, Y. Xu, “Exploring the application path of AIGC technology in the styling design of traditional artifacts: a case study of Song dynasty lacquerware,” in Proceedings of the Third International Conference on Electronics Technology and Artificial Intelligence (ETAI 2024), F. Yin and Z. Zhan, Eds., Guangzhou, China: SPIE, Sep. 2024, p. 38. DOI: 10.1117/12.3045170.
V. B. Sabbagh, C. B. C. Lima, G. Xexéo, “Comparative Analysis of Single and Multiagent Large Language Model Architectures for Domain-Specific Tasks in Well Construction,” SPE Journal, vol. 29, no. 12, pp. 6869–6882, 2024. DOI: 10.2118/223612-PA.
J. Akram, M. Aamir, R. Raut, A. Anaissi, R. H. Jhaveri, A. Akram, “AI-Generated Content-as-a-Service in IoMT-Based Smart Homes: Personalizing Patient Care With Human Digital Twins,” IEEE Trans. Consumer Electron., pp. 1–1, 2024. DOI: 10.1109/TCE.2024.3409173.
G. Liu et al., “Semantic Communications for Artificial Intelligence Generated Content (AIGC) Toward Effective Content Creation,” IEEE Network, vol. 38, no. 5, pp. 295–303, 2024. DOI: 10.1109/MNET.2024.3352917.
A. Singh, T. Jia, V. Nalagatla, “Generative AI Enabled Conversational Chatbot for Drilling and Production Analytics,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Oct. 2023, p. D021S065R002. DOI: 10.2118/216267-MS.
J. A. Weller, R. Rohs, “Structure-Based Drug Design with a Deep Hierarchical Generative Model,” J. Chem. Inf. Model., vol. 64, no. 16, pp. 6450–6463, 2024. DOI: 10.1021/acs.jcim.4c01193.
H. Zhang et al., “GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning,” J. Chem. Inf. Model., vol. 64, no. 3, pp. 666–676, 2024. DOI: 10.1021/acs.jcim.3c01700.
H. A. Kuzma, N. S. Arora, K. Farid, “Generative Models for Production Forecasting in Unconventional Oil and Gas Plays,” in Proceedings of the 2nd Unconventional Resources Technology Conference, Denver, Colorado, USA: American Association of Petroleum Geologists, 2014. DOI: 10.15530/urtec-2014-1928595.
Y. Perez Claro, N. Dal Santo, V. Krishnan, A. Kovscek, “Analyzing X-Ray CT Images from Unconventional Reservoirs Using Deep Generative Models,” in Proceedings of SPE Western Regional Meeting, Bakersfield, California, USA: SPE, Apr. 2022, p. D021S012R003. DOI: 10.2118/209280-MS.
M. Gao, Z. Li, Q. Wang, W. Fan, “DAE-GAN: Underwater Image Super-Resolution Based on Symmetric Degradation Attention Enhanced Generative Adversarial Network,” Symmetry, vol. 16, no. 5, p. 588, 2024. DOI: 10.3390/sym16050588.
Z. Lin, B. Lin, W. Ye, Y. Liu, “Trans-CNN GAN: Self-Attention Generative Adversarial Networkd for Remote Sensing Image Super-Resolution,” in Proceedings of 2024 4th International Conference on Neural Networks, Information and Communication (NNICE), Guangzhou, China: IEEE, Jan. 2024, pp. 456–459. DOI: 10.1109/NNICE61279.2024.10498876.
S. Salimzadeh, D. Kasperczyk, T. Kadeethum, “Predicting Ground Surface Deformation Induced by Pressurized Fractures Using Conditional Generative Adversarial Networks,” in Proceedings of 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA: ARMA, Jun. 2023, p. ARMA-2023-0218. DOI: 10.56952/ARMA-2023-0218.
C. Temizel, U. Odi, C. Cetin, Y. Pamukcu, “Advancing Digital Rock Imaging with Generative Adversarial Networks,” in Proceedings of SPE Western Regional Meeting, Palo Alto, California, USA: SPE, Apr. 2024, p. D011S001R003. DOI: 10.2118/218833-MS.
O. A. Gune, A. R. Lokhande, P. R. Mangsuli, “On Raster Image Segmentation, Well Log Instance Detection, and Depth Information Extraction from Rasters Using Deep Learning Models,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Oct. 2023, p. D021S053R004. DOI: 10.2118/216206-MS.
H. Liu, S. Zhou, Z. Chen, Y. Perl, J. Wang, “Using Generative Large Language Models for Hierarchical Relationship Prediction in Medical Ontologies,” in Proceedings of 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI), Orlando, FL, USA: IEEE, Jun. 2024, pp. 248–256. DOI: 10.1109/ICHI61247.2024.00040.
M. Prajapati, S. K. Baliarsingh, C. Dora, A. Bhoi, J. Hota, J. P. Mohanty, “Detection of AI-Generated Text Using Large Language Model,” in Proceedings of 2024 International Conference on Emerging Systems and Intelligent Computing (ESIC), Bhubaneswar, India: IEEE, Feb. 2024, pp. 735–740. DOI: 10.1109/ESIC60604.2024.10481602.
M. Amour, B. K. Rachmat, A. S. Rementeria, V. Guillot, E. Millan, “Empowering Drilling and Optimization with Generative AI,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Nov. 2024, p. D011S008R005. DOI: 10.2118/221862-MS.
E. Ferrigno, M. Rodriguez, E. Davidsson, “Revolutionizing Drilling Operations: Next-gen Llm-AI for Real-time Support in Well Construction Control Rooms,” in Proceedings of SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA: SPE, Sep. 2024, p. D021S017R007. DOI: 10.2118/220798-MS.
S. Rahman, S. Pal, S. Mittal, T. Chawla, C. Karmakar, “SYN-GAN: A robust intrusion detection system using GAN-based synthetic data for IoT security,” Internet of Things, vol. 26, Art. no. 101212, 2024. DOI: 10.1016/j.iot.2024.101212.
H. Zhao, L. Liu, F. Fan, H. Zhang, Y. Ma, “An Adaptive Federated Learning Intrusion Detection System Based on Generative Adversarial Networks under the Internet of Things,” in Proceedings of 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning, Shanghai China: ACM, Mar. 2024, pp. 1–6. DOI: 10.1145/3654823.3654824.
P. Dickerson, J. Worthen, “Optimizing Pipeline Systems for Greater Precision, Efficiency & Safety Using Emerging Technologies,” in PSIG Annual Meeting, Charleston, South Carolina, May 2024, Art. no. PSIG-2426. [Online]. Available: https://onepetro.org/PSIGAM/proceedings-abstract/PSIG24/All-PSIG24/PSIG-2426/545395. Accessed on: Jan. 13, 2025.
S. M. Tharayil, N. K. Alomari, D. K. Bubshait, “Detecting Anomalies in Water Quality Monitoring Using Deep Learning,” in SPE Water Lifecycle Management Conference and Exhibition, Abu Dhabi, UAE: SPE, Mar. 2024, p. D021S010R004. DOI: 10.2118/219049-MS.
K. Pani, I. Chawla, “Synthetic MRI in action: A novel framework in data augmentation strategies for robust multi-modal brain tumor segmentation,” Computers in Biology and Medicine, vol. 183, p. 109273, 2024. DOI: 10.1016/j.compbiomed.2024.109273.
Y. A. Khalil, A. Ayaz, C. Lorenz, J. Weese, J. Pluim, M. Breeuwer, “Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation,” Computerized Medical Imaging and Graphics, vol. 112, Art. no. 102332, 2024. DOI: 10.1016/j.compmedimag.2024.102332.
N. Pham, S. Fomel, “Seismic data augmentation for automatic faults picking using deep learning,” in Second International Meeting for Applied Geoscience & Energy. SEG Technical Program, Expanded Abstracts, 2022, pp. 1719–1724. DOI: 10.1190/image2022-3745790.1.
J. A. Leines-Artieda et al., “A Machine Learning-Based Data Augmentation Approach for Unconventional Reservoir Characterization Using Microseismic Data and EDFM,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Oct. 2022, p. D021S062R004. DOI: 10.2118/210989-MS.
Y. Zhu et al., “Networked Time-series Prediction with Incomplete Data via Generative Adversarial Network,” ACM Trans. Knowl. Discov. Data, vol. 18, no. 5, Art. no. 115, pp. 1–25, 2024. DOI: 10.1145/3643822.
J. Liu, S. Dong, P. Zhang, T. Li, C. Peng, Z. Hu, “Load forecasting based on dynamic adaptive and adversarial graph convolutional networks,” Energy and Buildings, vol. 312, Art. no. 114206, 2024. DOI: 10.1016/j.enbuild.2024.114206.
J. Meng, Y. Xiao, H. Wang, T. Ye, J. Chang, D. Zhang, “Towards Universal Production Forecasting via Adversarial Transfer Learning and Transformer with Application in the Shengli Oilfield, China,” in SEG Global Meeting Abstracts, 2024. DOI: 10.15530/urtec-2024-4032318.
Z. Hu, M. Sheng, Z. Wei, S. Tian, J. Zhou, S. Hu, “Fracture Morphology Evaluation of Surrogate Model for Fast Prediction Using Machine Learning,” in Proceedings of International Geomechanics Symposium, Al Khobar, Saudi Arabia: ARMA, Oct. 2023, p. ARMA-IGS-2023-0199. DOI: 10.56952/IGS-2023-0199.
Y. Bu, T. Chen, H. Duan, M. Liu, Y. Xue, “A semi-supervised learning approach for semantic parsing boosted by BERT word embedding,” IFS, vol. 46, no. 3, pp. 6577–6588, 2024. DOI: 10.3233/JIFS-233212.
X. Sun, Y. Yang, Y. Liu, “External Knowledge Enhancing Meta-learning Framework for Few-Shot Text Classification via Contrastive Learning and Adversarial Network,” in Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol. 14961, W. Zhang, A. Tung, Z. Zheng, Z. Yang, X. Wang, H. Guo, Eds. Springer, Singapore, 2024, pp. 46–58. DOI: 10.1007/978-981-97-7232-2_4.
K. Wiegand, M. Bedewi, K. Mukundakrishnan, D. Tishechkin, V. Ananthan, D. Kahn, “Using Generative AI to Build a Reservoir Simulation Assistant,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Nov. 2024, p. D011S020R001. DOI: 10.2118/221987-MS.
Z. Fan et al., “Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding,” in Proceedings of the ACM Web Conference 2024, Singapore: ACM, May 2024, pp. 1530–1537. DOI: 10.1145/3589335.3651927.
M. Cai et al., “Diffusion-Geo: A Two-Stage Controllable Text-To-Image Generative Model for Remote Sensing Scenarios,” in Proceedings of IGARSS 2024, Athens, Greece: IEEE, Jul. 2024, pp. 7003–7006. DOI: 10.1109/IGARSS53475.2024.10641523.
Z. Ma, S. Sun, B. Yan, H. Kwak, J. Gao, “Enhancing the Resolution of Micro-CT Images of Rock Samples via Unsupervised Machine Learning based on a Diffusion Model,” in Proceedings of SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA: SPE, Oct. 2023, p. D021S028R005. DOI: 10.2118/214883-MS.
M. H. Alnasser, M. Maucec, “On-The-Fly History Matching of Simulation Models Using Generative Diffusive Learning (SimGDL),” in Proceedings of International Petroleum Technology Conference, Dhahran, Saudi Arabia: IPTC, Feb. 2024, p. IPTC-23666-EA. DOI: 10.2523/IPTC-23666-EA.
S. Sai, R. Sai, V. Chamola, “Generative AI for Industry 5.0: Analyzing the impact of ChatGPT, DALLE, and Other Models,” IEEE Open J. Commun. Soc., vol. 6, pp. 3056–3066, 2025. DOI: 10.1109/OJCOMS.2024.3400161.
S. Jain, S. W. A. Subzwari, S. A. A. Subzwari, “Generative AI for Healthcare Engineering and Technology Challenges,” in Transfer, Diffusion and Adoption of Next-Generation Digital Technologies. TDIT 2023. IFIP Advances in Information and Communication Technology, vol. 697, S. K. Sharma, Y. K. Dwivedi, B. Metri, B. Lal, A. Elbanna, Eds. Springer, Cham, 2024, pp. 68–80. DOI: 10.1007/978-3-031-50188-3_7.
A. Gharieb et al., “In-House Integrated Big Data Management Platform for Exploration and Production Operations Digitalization: From Data Gathering to Generative AI through Machine Learning Implementation Using Cost-Effective Open-Source Technologies – Experienced Mature Workflow,” in Proceedings of the SPE Conference at Oman Petroleum & Energy Show, Muscat, Oman: SPE, Apr. 2024, p. D011S011R004. DOI: 10.2118/218560-MS.
S. Sidharth Manikandan, A. Sharma, S. Pellegrino, “Innovating Oil and Gas Forecasting: Developing a Trailblazing Generative AI Model,” in SEG Global Meeting Abstracts, 2024. DOI: 10.15530/urtec-2024-4044635.
O. E. Abdelaziem, A. N. Khafagy, T. A. Yehia, “Innovative Approach of Generative AI for Automating Technical Bid Evaluations in Oil Companies,” in Proceedings of Mediterranean Offshore Conference, Alexandria, Egypt: SPE, Oct. 2024, p. D021S012R003. DOI: 10.2118/223359-MS.
Y. Zhao et al., “A conditional generative model for end-to-end stress field prediction of composite bolted joints,” Engineering Applications of Artificial Intelligence, vol. 134, Art. no. 108692, 2024. DOI: 10.1016/j.engappai.2024.108692.
C. Xu, X. Wang, Y. Li, G. Wang, H. Zhang, “Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites,” CMES, vol. 140, no. 1, pp. 957–974, 2024. DOI: 10.32604/cmes.2024.047327.
Y. Wei, H. Fu, Y. E. Li, J. Yang, “A new P-wave reconstruction method for VSP data using conditional generative adversarial network,” in SEG Technical Program Expanded Abstracts 2019, San Antonio, Texas: Society of Exploration Geophysicists, Aug. 2019, pp. 2528–2532. DOI: 10.1190/segam2019-3206719.1.
D. K. Chang, W. Y. Yang, X. S. Yong, H. S. Li, “Seismic data interpolation with conditional generative adversarial network in time and frequency domain,” in SEG Technical Program Expanded Abstracts 2019, San Antonio, Texas: Society of Exploration Geophysicists, Aug. 2019, pp. 2589–2593. DOI: 10.1190/segam2019-3210118.1.
A. Koeshidayatullah, I. Ferreira, “A novel deep learning-assisted reservoir fracture delineation with conditional generative adversarial networks,” in SEG Technical Program Expanded Abstracts, 20 Aug. – 01 Sep. 2022, pp. 3234–3237. DOI: 10.1190/image2022-3751545.1.
A. Almassaad, H. Alajlan, R. Alebaikan, “Student Perceptions of Generative Artificial Intelligence: Investigating Utilization, Benefits, and Challenges in Higher Education,” Systems, vol. 12, no. 10, p. 385, 2024. DOI: 10.3390/systems12100385.
J. H. Gruenhagen, P. M. Sinclair, J.-A. Carroll, P. R. A. Baker, A. Wilson, D. Demant, “The rapid rise of generative AI and its implications for academic integrity: Students’ perceptions and use of chatbots for assistance with assessments,” Computers and Education: Artificial Intelligence, vol. 7, Art. no. 100273, 2024. DOI: 10.1016/j.caeai.2024.100273.
S. M. Tharayil, M. A. Idris, O. M. Alfaifi, M. S. Alghafis, “Unleashing the Power of Generative AI and LLM for Training Evaluation,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Nov. 2024, p. D021S056R006. DOI: 10.2118/222374-MS.
C. Bravo et al., “State of the Art of Artificial Intelligence and Predictive Analytics in the E&P Industry: A Technology Survey,” SPE Journal, vol. 19, no. 04, pp. 547–563, 2014. DOI: 10.2118/150314-PA.
L. Abou-Abbas, K. Henni, I. Jemal, N. Mezghani, “Generative AI with WGAN-GP for boosting seizure detection accuracy,” Front. Artif. Intell., vol. 7, Art. no. 1437315, 2024. DOI: 10.3389/frai.2024.1437315.
X. Li, F.-L. Zhang, “Classification of multi-type bearing fault features based on semi-supervised generative adversarial network (GAN),” Meas. Sci. Technol., vol. 35, no. 2, Art. no. 025107, 2024. DOI: 10.1088/1361-6501/ad068e.
N. Doloi, S. Ghosh, J. Phirani, “Super-Resolution Reconstruction of Reservoir Saturation Map with Physical Constraints Using Generative Adversarial Network,” in Proceedings of SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE: SPE, Jan. 2023, p. D011S001R006. DOI: 10.2118/212611-MS.
J. Zhang, Y. Li, W. Pei, S. Shirazi, “ConGANergy: A Framework for Engineering Data Augmentation with Application to Solid Particle Erosion,” in Proceedings of SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA: SPE, Sep. 2024, p. D031S032R009. DOI: 10.2118/220954-MS.
R. Yumlembam, B. Issac, S. M. Jacob, L. Yang, “Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers,” Information Fusion, vol. 111, Art. no. 102529, 2024. DOI: 10.1016/j.inffus.2024.102529.
Y. Wang, T. Sun, X. Yuan, S. Li, W. Ni, “Minimizing Adversarial Training Samples for Robust Image Classifiers: Analysis and Adversarial Example Generator Design,” IEEE Trans.Inform.Forensic Secur., vol. 19, pp. 9613–9628, 2024. DOI: 10.1109/TIFS.2024.3474973.
A. Basu, “The Impact of Artificial Intelligence on Cybersecurity,” in Proceedings of ADIPEC, Abu Dhabi, UAE: SPE, Nov. 2024, p. D021S077R001. DOI: 10.2118/222493-MS.
F. Barthel, A. Beckmann, W. Morgenstern, A. Hilsmann, P. Eisert, “Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks,” in Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA: IEEE, Jun. 2024, pp. 7963–7972. DOI: 10.1109/CVPRW63382.2024.00794.
Y. Li, J. Xiao, Y. Wang, Z. Lu, “DepthGAN: GAN-based depth generation from semantic layouts,” Comp. Visual Media, vol. 10, no. 3, pp. 505–522, 2024. DOI: 10.1007/s41095-023-0350-8.
T. Zhang, P. Tilke, E. Dupont, L. Zhu, L. Liang, W. Bailey, “Generating Geologically Realistic 3D Reservoir Facies Models Using Deep Learning of Sedimentary Architecture with Generative Adversarial Networks,” in Proceedings of 11th International Petroleum Technology Conference, Beijing, China: IPTC, Mar. 2019. DOI: 10.2523/IPTC-19454-MS.
N. You, Y. Elita Li, A. Cheng, “2D-to-3D reconstruction of carbonate digital rocks using Progressive Growing GAN,” in SEG Technical Program Expanded Abstracts, 2021, pp. 1490–1494. DOI: 10.1190/segam2021-3592148.1.
R. Priyadarshi, R. Ranjan, A. Kumar Vishwakarma, T. Yang, R. Singh Rathore, “Exploring the Frontiers of Unsupervised Learning Techniques for Diagnosis of Cardiovascular Disorder: A Systematic Review,” IEEE Access, vol. 12, pp. 139253–139272, 2024. DOI: 10.1109/ACCESS.2024.3468163.
A. Sadana, N. Thakur, N. Poria, A. Anand, K. R. Seeja, “Comprehensive Literature Survey on Deep Learning Used in Image Memorability Prediction and Modification,” in International Conference on Innovative Computing and Communications. ICICC 2023. Lecture Notes in Networks and Systems, vol. 731, A. E. Hassanien, O. Castillo, S. Anand, A. Jaiswal, Eds. Springer, Singapore, 2024, pp. 113–123. DOI: 10.1007/978-981-99-4071-4_10.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Energy Systems Research

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
